|
import logging |
|
import os |
|
import random |
|
import subprocess |
|
import sys |
|
from datetime import datetime |
|
import numpy as np |
|
import torch.utils.data |
|
from torch import nn |
|
from torch.utils.tensorboard import SummaryWriter |
|
from text_to_speech.utils.commons.dataset_utils import data_loader |
|
from text_to_speech.utils.commons.hparams import hparams |
|
from text_to_speech.utils.commons.meters import AvgrageMeter |
|
from text_to_speech.utils.commons.tensor_utils import tensors_to_scalars |
|
from text_to_speech.utils.commons.trainer import Trainer |
|
from text_to_speech.utils.nn.model_utils import get_grad_norm |
|
|
|
torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system')) |
|
|
|
log_format = '%(asctime)s %(message)s' |
|
logging.basicConfig(stream=sys.stdout, level=logging.INFO, |
|
format=log_format, datefmt='%m/%d %I:%M:%S %p') |
|
|
|
|
|
class BaseTask(nn.Module): |
|
def __init__(self, *args, **kwargs): |
|
super(BaseTask, self).__init__() |
|
self.current_epoch = 0 |
|
self.global_step = 0 |
|
self.trainer = None |
|
self.use_ddp = False |
|
self.gradient_clip_norm = hparams['clip_grad_norm'] |
|
self.gradient_clip_val = hparams.get('clip_grad_value', 0) |
|
self.model = None |
|
self.training_losses_meter = None |
|
self.logger: SummaryWriter = None |
|
|
|
|
|
|
|
|
|
def build_model(self): |
|
raise NotImplementedError |
|
|
|
@data_loader |
|
def train_dataloader(self): |
|
raise NotImplementedError |
|
|
|
@data_loader |
|
def test_dataloader(self): |
|
raise NotImplementedError |
|
|
|
@data_loader |
|
def val_dataloader(self): |
|
raise NotImplementedError |
|
|
|
def build_scheduler(self, optimizer): |
|
return None |
|
|
|
def build_optimizer(self, model): |
|
raise NotImplementedError |
|
|
|
def configure_optimizers(self): |
|
optm = self.build_optimizer(self.model) |
|
self.scheduler = self.build_scheduler(optm) |
|
if isinstance(optm, (list, tuple)): |
|
return optm |
|
return [optm] |
|
|
|
def build_tensorboard(self, save_dir, name, **kwargs): |
|
log_dir = os.path.join(save_dir, name) |
|
os.makedirs(log_dir, exist_ok=True) |
|
self.logger = SummaryWriter(log_dir=log_dir, **kwargs) |
|
|
|
|
|
|
|
|
|
def on_train_start(self): |
|
pass |
|
|
|
def on_train_end(self): |
|
pass |
|
|
|
def on_epoch_start(self): |
|
self.training_losses_meter = {'total_loss': AvgrageMeter()} |
|
|
|
def on_epoch_end(self): |
|
loss_outputs = {k: round(v.avg, 4) for k, v in self.training_losses_meter.items()} |
|
print(f"Epoch {self.current_epoch} ended. Steps: {self.global_step}. {loss_outputs}") |
|
|
|
def _training_step(self, sample, batch_idx, optimizer_idx): |
|
""" |
|
|
|
:param sample: |
|
:param batch_idx: |
|
:return: total loss: torch.Tensor, loss_log: dict |
|
""" |
|
raise NotImplementedError |
|
|
|
def training_step(self, sample, batch_idx, optimizer_idx=-1): |
|
""" |
|
|
|
:param sample: |
|
:param batch_idx: |
|
:param optimizer_idx: |
|
:return: {'loss': torch.Tensor, 'progress_bar': dict, 'tb_log': dict} |
|
""" |
|
loss_ret = self._training_step(sample, batch_idx, optimizer_idx) |
|
if loss_ret is None: |
|
return {'loss': None} |
|
total_loss, log_outputs = loss_ret |
|
log_outputs = tensors_to_scalars(log_outputs) |
|
for k, v in log_outputs.items(): |
|
if k not in self.training_losses_meter: |
|
self.training_losses_meter[k] = AvgrageMeter() |
|
if not np.isnan(v): |
|
self.training_losses_meter[k].update(v) |
|
self.training_losses_meter['total_loss'].update(total_loss.item()) |
|
|
|
if optimizer_idx >= 0: |
|
log_outputs[f'lr_{optimizer_idx}'] = self.trainer.optimizers[optimizer_idx].param_groups[0]['lr'] |
|
|
|
progress_bar_log = log_outputs |
|
tb_log = {f'tr/{k}': v for k, v in log_outputs.items()} |
|
return { |
|
'loss': total_loss, |
|
'progress_bar': progress_bar_log, |
|
'tb_log': tb_log |
|
} |
|
|
|
def on_before_optimization(self, opt_idx): |
|
if self.gradient_clip_norm > 0: |
|
prefix = f"grad_norm_opt_idx_{opt_idx}" |
|
grad_norm = torch.nn.utils.clip_grad_norm_(self.parameters(), self.gradient_clip_norm) |
|
grad_norm_dict = { |
|
f"{prefix}/task.parameters": grad_norm |
|
} |
|
return grad_norm_dict |
|
if self.gradient_clip_val > 0: |
|
torch.nn.utils.clip_grad_value_(self.parameters(), self.gradient_clip_val) |
|
|
|
def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx): |
|
if self.scheduler is not None: |
|
self.scheduler.step(self.global_step // hparams['accumulate_grad_batches']) |
|
|
|
|
|
|
|
|
|
def validation_start(self): |
|
pass |
|
|
|
def validation_step(self, sample, batch_idx): |
|
""" |
|
|
|
:param sample: |
|
:param batch_idx: |
|
:return: output: {"losses": {...}, "total_loss": float, ...} or (total loss: torch.Tensor, loss_log: dict) |
|
""" |
|
raise NotImplementedError |
|
|
|
def validation_end(self, outputs): |
|
""" |
|
|
|
:param outputs: |
|
:return: loss_output: dict |
|
""" |
|
all_losses_meter = {'total_loss': AvgrageMeter()} |
|
for output in outputs: |
|
if len(output) == 0 or output is None: |
|
continue |
|
if isinstance(output, dict): |
|
assert 'losses' in output, 'Key "losses" should exist in validation output.' |
|
n = output.pop('nsamples', 1) |
|
losses = tensors_to_scalars(output['losses']) |
|
total_loss = output.get('total_loss', sum(losses.values())) |
|
else: |
|
assert len(output) == 2, 'Validation output should only consist of two elements: (total_loss, losses)' |
|
n = 1 |
|
total_loss, losses = output |
|
losses = tensors_to_scalars(losses) |
|
if isinstance(total_loss, torch.Tensor): |
|
total_loss = total_loss.item() |
|
for k, v in losses.items(): |
|
if k not in all_losses_meter: |
|
all_losses_meter[k] = AvgrageMeter() |
|
all_losses_meter[k].update(v, n) |
|
all_losses_meter['total_loss'].update(total_loss, n) |
|
loss_output = {k: round(v.avg, 4) for k, v in all_losses_meter.items()} |
|
print(f"| Validation results@{self.global_step}: {loss_output}") |
|
return { |
|
'tb_log': {f'val/{k}': v for k, v in loss_output.items()}, |
|
'val_loss': loss_output['total_loss'] |
|
} |
|
|
|
|
|
|
|
|
|
def test_start(self): |
|
pass |
|
|
|
def test_step(self, sample, batch_idx): |
|
return self.validation_step(sample, batch_idx) |
|
|
|
def test_end(self, outputs): |
|
return self.validation_end(outputs) |
|
|
|
|
|
|
|
|
|
@classmethod |
|
def start(cls): |
|
os.environ['MASTER_PORT'] = str(random.randint(15000, 30000)) |
|
random.seed(hparams['seed']) |
|
np.random.seed(hparams['seed']) |
|
work_dir = hparams['work_dir'] |
|
trainer = Trainer( |
|
work_dir=work_dir, |
|
val_check_interval=hparams['val_check_interval'], |
|
tb_log_interval=hparams['tb_log_interval'], |
|
max_updates=hparams['max_updates'], |
|
num_sanity_val_steps=hparams['num_sanity_val_steps'] if not hparams['validate'] else 10000, |
|
accumulate_grad_batches=hparams['accumulate_grad_batches'], |
|
print_nan_grads=hparams['print_nan_grads'], |
|
resume_from_checkpoint=hparams.get('resume_from_checkpoint', 0), |
|
amp=hparams['amp'], |
|
monitor_key=hparams['valid_monitor_key'], |
|
monitor_mode=hparams['valid_monitor_mode'], |
|
num_ckpt_keep=hparams['num_ckpt_keep'], |
|
save_best=hparams['save_best'], |
|
seed=hparams['seed'], |
|
debug=hparams['debug'] |
|
) |
|
if not hparams['infer']: |
|
trainer.fit(cls) |
|
else: |
|
trainer.test(cls) |
|
|
|
def on_keyboard_interrupt(self): |
|
pass |
|
|