|
import torch |
|
|
|
|
|
def get_focus_rate(attn, src_padding_mask=None, tgt_padding_mask=None): |
|
''' |
|
attn: bs x L_t x L_s |
|
''' |
|
if src_padding_mask is not None: |
|
attn = attn * (1 - src_padding_mask.float())[:, None, :] |
|
|
|
if tgt_padding_mask is not None: |
|
attn = attn * (1 - tgt_padding_mask.float())[:, :, None] |
|
|
|
focus_rate = attn.max(-1).values.sum(-1) |
|
focus_rate = focus_rate / attn.sum(-1).sum(-1) |
|
return focus_rate |
|
|
|
|
|
def get_phone_coverage_rate(attn, src_padding_mask=None, src_seg_mask=None, tgt_padding_mask=None): |
|
''' |
|
attn: bs x L_t x L_s |
|
''' |
|
src_mask = attn.new(attn.size(0), attn.size(-1)).bool().fill_(False) |
|
if src_padding_mask is not None: |
|
src_mask |= src_padding_mask |
|
if src_seg_mask is not None: |
|
src_mask |= src_seg_mask |
|
|
|
attn = attn * (1 - src_mask.float())[:, None, :] |
|
if tgt_padding_mask is not None: |
|
attn = attn * (1 - tgt_padding_mask.float())[:, :, None] |
|
|
|
phone_coverage_rate = attn.max(1).values.sum(-1) |
|
|
|
phone_coverage_rate = phone_coverage_rate / (1 - src_mask.float()).sum(-1) |
|
return phone_coverage_rate |
|
|
|
|
|
def get_diagonal_focus_rate(attn, attn_ks, target_len, src_padding_mask=None, tgt_padding_mask=None, |
|
band_mask_factor=5, band_width=50): |
|
''' |
|
attn: bx x L_t x L_s |
|
attn_ks: shape: tensor with shape [batch_size], input_lens/output_lens |
|
|
|
diagonal: y=k*x (k=attn_ks, x:output, y:input) |
|
1 0 0 |
|
0 1 0 |
|
0 0 1 |
|
y>=k*(x-width) and y<=k*(x+width):1 |
|
else:0 |
|
''' |
|
|
|
width1 = target_len / band_mask_factor |
|
width2 = target_len.new(target_len.size()).fill_(band_width) |
|
width = torch.where(width1 < width2, width1, width2).float() |
|
base = torch.ones(attn.size()).to(attn.device) |
|
zero = torch.zeros(attn.size()).to(attn.device) |
|
x = torch.arange(0, attn.size(1)).to(attn.device)[None, :, None].float() * base |
|
y = torch.arange(0, attn.size(2)).to(attn.device)[None, None, :].float() * base |
|
cond = (y - attn_ks[:, None, None] * x) |
|
cond1 = cond + attn_ks[:, None, None] * width[:, None, None] |
|
cond2 = cond - attn_ks[:, None, None] * width[:, None, None] |
|
mask1 = torch.where(cond1 < 0, zero, base) |
|
mask2 = torch.where(cond2 > 0, zero, base) |
|
mask = mask1 * mask2 |
|
|
|
if src_padding_mask is not None: |
|
attn = attn * (1 - src_padding_mask.float())[:, None, :] |
|
if tgt_padding_mask is not None: |
|
attn = attn * (1 - tgt_padding_mask.float())[:, :, None] |
|
|
|
diagonal_attn = attn * mask |
|
diagonal_focus_rate = diagonal_attn.sum(-1).sum(-1) / attn.sum(-1).sum(-1) |
|
return diagonal_focus_rate, mask |
|
|