za3karia commited on
Commit
26bb460
·
verified ·
1 Parent(s): 441616b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py CHANGED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from sklearn.model_selection import train_test_split
4
+ from sklearn.linear_model import LinearRegression
5
+
6
+ # Load the dataset
7
+ @st.cache
8
+ def load_data():
9
+ url = "https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv"
10
+ data = pd.read_csv(url)
11
+ return data
12
+
13
+ # App title
14
+ st.title("House Price Prediction")
15
+
16
+ # Load data
17
+ data = load_data()
18
+ st.write("Dataset", data)
19
+
20
+ # Feature selection
21
+ st.sidebar.header("Configure Input Features")
22
+ selected_features = st.sidebar.multiselect("Select features", data.columns[:-1])
23
+
24
+ if selected_features:
25
+ X = data[selected_features]
26
+ y = data["medv"] # Median value of homes
27
+
28
+ # Split data
29
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
30
+
31
+ # Train model
32
+ model = LinearRegression()
33
+ model.fit(X_train, y_train)
34
+
35
+ # Prediction
36
+ y_pred = model.predict(X_test)
37
+
38
+ # Display results
39
+ st.write("Selected Features", selected_features)
40
+ st.write("Model Coefficients", model.coef_)
41
+ st.write("Predictions", y_pred)
42
+ st.write("Actual Values", y_test.values)
43
+
44
+ # Model performance
45
+ from sklearn.metrics import mean_squared_error, r2_score
46
+ st.write("Mean Squared Error", mean_squared_error(y_test, y_pred))
47
+ st.write("R-squared Score", r2_score(y_test, y_pred))