Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from sklearn.linear_model import LinearRegression
|
5 |
+
|
6 |
+
# Load the dataset
|
7 |
+
@st.cache
|
8 |
+
def load_data():
|
9 |
+
url = "https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv"
|
10 |
+
data = pd.read_csv(url)
|
11 |
+
return data
|
12 |
+
|
13 |
+
# App title
|
14 |
+
st.title("House Price Prediction")
|
15 |
+
|
16 |
+
# Load data
|
17 |
+
data = load_data()
|
18 |
+
st.write("Dataset", data)
|
19 |
+
|
20 |
+
# Feature selection
|
21 |
+
st.sidebar.header("Configure Input Features")
|
22 |
+
selected_features = st.sidebar.multiselect("Select features", data.columns[:-1])
|
23 |
+
|
24 |
+
if selected_features:
|
25 |
+
X = data[selected_features]
|
26 |
+
y = data["medv"] # Median value of homes
|
27 |
+
|
28 |
+
# Split data
|
29 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
30 |
+
|
31 |
+
# Train model
|
32 |
+
model = LinearRegression()
|
33 |
+
model.fit(X_train, y_train)
|
34 |
+
|
35 |
+
# Prediction
|
36 |
+
y_pred = model.predict(X_test)
|
37 |
+
|
38 |
+
# Display results
|
39 |
+
st.write("Selected Features", selected_features)
|
40 |
+
st.write("Model Coefficients", model.coef_)
|
41 |
+
st.write("Predictions", y_pred)
|
42 |
+
st.write("Actual Values", y_test.values)
|
43 |
+
|
44 |
+
# Model performance
|
45 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
46 |
+
st.write("Mean Squared Error", mean_squared_error(y_test, y_pred))
|
47 |
+
st.write("R-squared Score", r2_score(y_test, y_pred))
|