Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,18 +5,29 @@ from sklearn.model_selection import train_test_split
|
|
5 |
from sklearn.linear_model import LinearRegression
|
6 |
from sklearn.metrics import mean_squared_error, r2_score
|
7 |
|
8 |
-
#
|
9 |
@st.cache_data
|
10 |
-
def
|
11 |
-
url = "https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv"
|
12 |
data = pd.read_csv(url)
|
13 |
return data
|
14 |
|
15 |
# App title
|
16 |
st.title("House Price Prediction")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
# Load data
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
st.write("Dataset", data)
|
21 |
|
22 |
# Feature selection
|
@@ -25,7 +36,7 @@ selected_features = st.sidebar.multiselect("Select features", data.columns[:-1])
|
|
25 |
|
26 |
if selected_features:
|
27 |
X = data[selected_features]
|
28 |
-
y = data[
|
29 |
|
30 |
# Split data
|
31 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
@@ -37,6 +48,15 @@ if selected_features:
|
|
37 |
# Prediction
|
38 |
y_pred = model.predict(X_test)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
# Plot
|
42 |
fig, ax = plt.subplots()
|
@@ -46,12 +66,3 @@ if selected_features:
|
|
46 |
ax.set_ylabel('Predicted')
|
47 |
ax.set_title('Actual vs Predicted')
|
48 |
st.pyplot(fig)
|
49 |
-
|
50 |
-
# Model performance
|
51 |
-
st.write("Mean Squared Error", mean_squared_error(y_test, y_pred))
|
52 |
-
st.write("R-squared Score", r2_score(y_test, y_pred))
|
53 |
-
# Display results
|
54 |
-
st.write("Selected Features", selected_features)
|
55 |
-
st.write("Model Coefficients", model.coef_)
|
56 |
-
st.write("Predictions", y_pred)
|
57 |
-
st.write("Actual Values", y_test.values)
|
|
|
5 |
from sklearn.linear_model import LinearRegression
|
6 |
from sklearn.metrics import mean_squared_error, r2_score
|
7 |
|
8 |
+
# Function to load data
|
9 |
@st.cache_data
|
10 |
+
def load_data_from_url(url):
|
|
|
11 |
data = pd.read_csv(url)
|
12 |
return data
|
13 |
|
14 |
# App title
|
15 |
st.title("House Price Prediction")
|
16 |
|
17 |
+
# Sidebar for user inputs
|
18 |
+
st.sidebar.header("Upload Your Data")
|
19 |
+
uploaded_file = st.sidebar.file_uploader("Upload a CSV file", type=["csv"])
|
20 |
+
data_url = st.sidebar.text_input("Or enter a URL to a CSV file")
|
21 |
+
|
22 |
# Load data
|
23 |
+
if uploaded_file:
|
24 |
+
data = pd.read_csv(uploaded_file)
|
25 |
+
elif data_url:
|
26 |
+
data = load_data_from_url(data_url)
|
27 |
+
else:
|
28 |
+
st.write("Please upload a CSV file or enter a URL to a CSV file.")
|
29 |
+
st.stop()
|
30 |
+
|
31 |
st.write("Dataset", data)
|
32 |
|
33 |
# Feature selection
|
|
|
36 |
|
37 |
if selected_features:
|
38 |
X = data[selected_features]
|
39 |
+
y = data.iloc[:, -1] # Assuming the last column is the target
|
40 |
|
41 |
# Split data
|
42 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
48 |
# Prediction
|
49 |
y_pred = model.predict(X_test)
|
50 |
|
51 |
+
# Display results
|
52 |
+
st.write("Selected Features", selected_features)
|
53 |
+
st.write("Model Coefficients", model.coef_)
|
54 |
+
st.write("Predictions", y_pred)
|
55 |
+
st.write("Actual Values", y_test.values)
|
56 |
+
|
57 |
+
# Model performance
|
58 |
+
st.write("Mean Squared Error", mean_squared_error(y_test, y_pred))
|
59 |
+
st.write("R-squared Score", r2_score(y_test, y_pred))
|
60 |
|
61 |
# Plot
|
62 |
fig, ax = plt.subplots()
|
|
|
66 |
ax.set_ylabel('Predicted')
|
67 |
ax.set_title('Actual vs Predicted')
|
68 |
st.pyplot(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|