File size: 1,178 Bytes
06cf9c4
3c6b95f
ed5c4cc
 
 
06cf9c4
ed5c4cc
06cf9c4
ed5c4cc
8833e69
360ead8
5f6c3f6
06cf9c4
3402c51
88d45e0
b0e95e2
d77d9c9
f7ad5f0
d77d9c9
793eafb
106ae96
2c5e4eb
3c6b95f
36864b0
5da22d1
ce356a3
3c6b95f
 
 
00b813c
0329016
ec04b94
ef70bbb
06cf9c4
117600f
 
3c6b95f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr
import jason
import time
import ctypes #to run on C api directly 
import llama_cpp
from llama_cpp import Llama
from huggingface_hub import hf_hub_download #load from huggingfaces 


llm = Llama(model_path= hf_hub_download(repo_id="TheBloke/Vigogne-2-7B-Chat-GGML", filename="vigogne-2-7b-chat.ggmlv3.q4_1.bin"), n_ctx=2048) #download model from hf/ n_ctx=2048 for high ccontext length

history = []

def generate_text(input_text, history):
    print("history ",history)
    print("input ", input_text)
    if history == []:
        input_text_with_history = f"Q: {input_text} \n A:"
    else:
        input_text_with_history = history[-1][1]+ "\n"
        input_text_with_history += f"Q: {input_text} \n A:"
    print("new input", input_text_with_history)
    output = llm(input_text_with_history, max_tokens=1024, stop=["Q:", "\n"], stream=True)
    response = output['choices'][0]['text'] + "\n"
    print("response", response)
    history =["init",input_text_with_history]
    return response
    for out in output
     print(jason.dump(out, indent=2))

demo = gr.ChatInterface(generate_text)
demo.queue(concurrency_count=1, max_size=5)
demo.launch()