File size: 985 Bytes
06cf9c4
ed5c4cc
 
 
06cf9c4
ed5c4cc
06cf9c4
ed5c4cc
8833e69
360ead8
5f6c3f6
06cf9c4
3402c51
88d45e0
b0e95e2
d77d9c9
 
 
 
2c5e4eb
 
3402c51
1e4b0ca
0329016
00b813c
0329016
ec04b94
ef70bbb
06cf9c4
117600f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr
import time
import ctypes #to run on C api directly 
import llama_cpp
from llama_cpp import Llama
from huggingface_hub import hf_hub_download #load from huggingfaces 


llm = Llama(model_path= hf_hub_download(repo_id="TheBloke/Vigogne-2-7B-Chat-GGML", filename="vigogne-2-7b-chat.ggmlv3.q4_1.bin"), n_ctx=2048) #download model from hf/ n_ctx=2048 for high ccontext length

history = []

def generate_text(input_text, history):
    print("history ",history)
    print("input ", input_text)
    if history == []:
        input_text_with_history = input_text
    else:
        input_text_with_history = "".join(i[0] + " \n"+i[1] for i in history)
    print("new input", input_text_with_history)
    output = llm(f"Q: {input_text_with_history} \n A:", max_tokens=1024, stop=["Q:", "\n"], echo=True)
    response = output['choices'][0]['text']
    return response
    

demo = gr.ChatInterface(generate_text)
demo.queue(concurrency_count=1, max_size=5)
demo.launch()