Spaces:
Runtime error
Runtime error
import gradio as gr | |
import copy | |
import time | |
import ctypes #to run on C api directly | |
import llama_cpp | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download #load from huggingfaces | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
llm = Llama(model_path= hf_hub_download(repo_id="TheBloke/Dolphin-Llama2-7B-GGML", filename="dolphin-llama2-7b.ggmlv3.q4_1.bin"), n_ctx=2048) #download model from hf/ n_ctx=2048 for high ccontext length | |
history = [] | |
pre_prompt = " The user and the AI are having a conversation : <|endoftext|> \n " | |
def get_pdf_text(pdfs): | |
text="" | |
for pdf in pdfs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text+= page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter(separator="\n", | |
chunk_size=1000, chunk_overlap = 200, length_function=len) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
embeddings = OpenAIEmbeddings() | |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def generate_text(input_text, history): | |
print("history ",history) | |
print("input ", input_text) | |
temp ="" | |
if history == []: | |
input_text_with_history = f"SYSTEM:{pre_prompt}"+ "\n" + f"USER: {input_text} " + "\n" +" ASSISTANT:" | |
else: | |
input_text_with_history = f"{history[-1][1]}"+ "\n" | |
input_text_with_history += f"USER: {input_text}" + "\n" +" ASSISTANT:" | |
print("new input", input_text_with_history) | |
output = llm(input_text_with_history, max_tokens=1024, stop=["<|prompter|>", "<|endoftext|>", "<|endoftext|> \n","ASSISTANT:","USER:","SYSTEM:"], stream=True) | |
for out in output: | |
stream = copy.deepcopy(out) | |
print(stream["choices"][0]["text"]) | |
temp += stream["choices"][0]["text"] | |
yield temp | |
history =["init",input_text_with_history] | |
demo = gr.ChatInterface(generate_text, | |
title="LLM on CPU", | |
description="Running LLM with https://github.com/abetlen/llama-cpp-python. btw the text streaming thing was the hardest thing to impliment", | |
examples=["Hello", "Am I cool?", "Are tomatoes vegetables?"], | |
cache_examples=True, | |
retry_btn=None, | |
undo_btn="Delete Previous", | |
clear_btn="Clear",) | |
demo.queue(concurrency_count=1, max_size=5) | |
demo.launch() | |