import gradio as gr import time import ctypes #to run on C api directly import llama_cpp from llama_cpp import Llama from huggingface_hub import hf_hub_download #load from huggingfaces llm = Llama(model_path= hf_hub_download(repo_id="TheBloke/StableBeluga-7B-GGML", filename="stablebeluga-7b.ggmlv3.q6_K.bin")) def generate_text(input_text): output = llm(f"Q: {input_text} A:", max_tokens=521, stop=["Q:", "\n"], echo=True) return output['choices'][0]['text'] input_text = gr.inputs.Textbox(lines= 10, label="Enter your input text") output_text = gr.outputs.Textbox(label="Output text") description = "bro neil it currently dosent work two people sending it request at the same time so going to fix that but currently running ggml models with llama.cpp implementation in python [https://github.com/abetlen/llama-cpp-python]" examples = [ ["What is the capital of France? ", "The capital of France is Paris."], ["Who wrote the novel 'Pride and Prejudice'?", "The novel 'Pride and Prejudice' was written by Jane Austen."], ["What is the square root of 64?", "The square root of 64 is 8."] ] with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") def user(user_message, history): return "", history + [[user_message, None]] def bot(history): bot_message = output_text history[-1][1] = "" for character in bot_message: history[-1][1] += character time.sleep(0.05) yield history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.queue() if __name__ == "__main__": demo.launch()