import gradio as gr import time import ctypes #to run on C api directly import llama_cpp from llama_cpp import Llama from huggingface_hub import hf_hub_download #load from huggingfaces llm = Llama(model_path= hf_hub_download(repo_id="TheBloke/Vigogne-2-7B-Chat-GGML", filename="vigogne-2-7b-chat.ggmlv3.q4_1.bin"), n_ctx=2048) #download model from hf/ n_ctx=2048 for high ccontext length history = [] def generate_text(input_text, history): print("history ",history) print("input ", input_text) if history == []: input_text_with_history = input_text else: input_text_with_history = "".join(i[0] + " \n"+i[1] for i in history) print("new input", input_text_with_history) output = llm(f"Q: {input_text_with_history} \n A:", max_tokens=1024, stop=["Q:", "\n"], echo=True) response = output['choices'][0]['text'] return response demo = gr.ChatInterface(generate_text) demo.queue(concurrency_count=1, max_size=5) demo.launch()