import gradio as gr from fastai.vision.all import * path = Path() path.ls(file_exts='.pkl') learn = load_learner(path/'model.pkl') labels = learn.dls.vocab # read labels from Data Loader def classify_image(img): pred,pred_idx,probs = learn.predict(img) # use passed image for prediction return {labels[i]: float(probs[i]) for i in range(len(labels))} # return all results image = gr.inputs.Image(shape=(224,224)) label = gr.outputs.Label() examples = ['chp.jpg', 'traffic.jpg', 'traffic2.jpg', 'traffic3.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)