Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,17 @@ from langchain_openai import ChatOpenAI
|
|
2 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain_community.vectorstores import Chroma
|
5 |
-
from langchain_community.document_loaders import PyPDFLoader
|
6 |
-
from langchain_community.document_loaders import PDFPlumberLoader
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain_community.chat_message_histories import ChatMessageHistory
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
from langchain_core.prompts import PromptTemplate
|
|
|
|
|
11 |
import streamlit as st
|
12 |
import os
|
13 |
from io import BytesIO
|
14 |
-
from langchain_core.document_loaders import BaseLoader
|
15 |
-
from langchain_core.documents import Document
|
16 |
import pdfplumber
|
17 |
|
18 |
-
|
19 |
class InMemoryPDFLoader(BaseLoader):
|
20 |
def __init__(self, file_bytes: bytes):
|
21 |
self.file_bytes = file_bytes
|
@@ -30,7 +27,6 @@ class InMemoryPDFLoader(BaseLoader):
|
|
30 |
|
31 |
# Access the OpenAI API key from the environment
|
32 |
open_ai_key = os.getenv("OPENAI_API_KEY")
|
33 |
-
|
34 |
llm = ChatOpenAI(api_key=open_ai_key)
|
35 |
|
36 |
template = """Use the following pieces of information to answer the user's question.
|
@@ -45,71 +41,51 @@ Helpful answer:
|
|
45 |
|
46 |
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
|
47 |
|
48 |
-
|
49 |
-
pdf_file = st.file_uploader("Upload your pdf",type="pdf")
|
50 |
-
|
51 |
-
|
52 |
-
# upload PDF
|
53 |
-
# pdf_file = st.file_uploader("Upload your pdf",type="pdf")
|
54 |
question = st.chat_input("Ask your question")
|
55 |
|
56 |
-
|
57 |
if pdf_file is not None:
|
58 |
-
try:
|
59 |
pdf_bytes = pdf_file.read()
|
60 |
loader = InMemoryPDFLoader(file_bytes=pdf_bytes)
|
61 |
-
# Load and process the PDF
|
62 |
-
# loader = PDFPlumberLoader(pdf_file)
|
63 |
pdf_data = loader.load()
|
64 |
-
|
65 |
# Split the text into chunks
|
66 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
67 |
docs = text_splitter.split_documents(pdf_data)
|
68 |
-
|
69 |
# Create a Chroma vector store
|
70 |
embeddings = HuggingFaceEmbeddings(model_name="embaas/sentence-transformers-multilingual-e5-base")
|
71 |
db = Chroma.from_documents(docs, embeddings)
|
72 |
-
|
73 |
# Initialize message history for conversation
|
74 |
message_history = ChatMessageHistory()
|
75 |
-
|
76 |
# Memory for conversational context
|
77 |
memory = ConversationBufferMemory(
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
# Create a chain that uses the Chroma vector store
|
85 |
chain = ConversationalRetrievalChain.from_llm(
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
if question:
|
95 |
-
|
96 |
-
|
97 |
st.markdown(question)
|
98 |
-
|
99 |
-
|
100 |
with st.chat_message("assistant"):
|
101 |
-
# Process the question
|
102 |
res = chain({"question": question})
|
103 |
answer = res["answer"]
|
104 |
st.write(f"{answer}")
|
105 |
-
|
106 |
-
# Process the question
|
107 |
-
# res = chain({"question": question})
|
108 |
-
# answer = res["answer"]
|
109 |
-
st.write_stream(chain({"question": question})["answer"])
|
110 |
-
# st.markdoun(answer)
|
111 |
-
# st.text(f"{answer}")
|
112 |
|
113 |
except Exception as e:
|
114 |
st.error(f"An error occurred: {e}")
|
115 |
-
|
|
|
2 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain_community.vectorstores import Chroma
|
|
|
|
|
5 |
from langchain.chains import ConversationalRetrievalChain
|
6 |
from langchain_community.chat_message_histories import ChatMessageHistory
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
from langchain_core.prompts import PromptTemplate
|
9 |
+
from langchain_core.document_loaders import BaseLoader
|
10 |
+
from langchain_core.documents import Document
|
11 |
import streamlit as st
|
12 |
import os
|
13 |
from io import BytesIO
|
|
|
|
|
14 |
import pdfplumber
|
15 |
|
|
|
16 |
class InMemoryPDFLoader(BaseLoader):
|
17 |
def __init__(self, file_bytes: bytes):
|
18 |
self.file_bytes = file_bytes
|
|
|
27 |
|
28 |
# Access the OpenAI API key from the environment
|
29 |
open_ai_key = os.getenv("OPENAI_API_KEY")
|
|
|
30 |
llm = ChatOpenAI(api_key=open_ai_key)
|
31 |
|
32 |
template = """Use the following pieces of information to answer the user's question.
|
|
|
41 |
|
42 |
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
|
43 |
|
44 |
+
pdf_file = st.file_uploader("Upload your PDF", type="pdf")
|
|
|
|
|
|
|
|
|
|
|
45 |
question = st.chat_input("Ask your question")
|
46 |
|
|
|
47 |
if pdf_file is not None:
|
48 |
+
try:
|
49 |
pdf_bytes = pdf_file.read()
|
50 |
loader = InMemoryPDFLoader(file_bytes=pdf_bytes)
|
|
|
|
|
51 |
pdf_data = loader.load()
|
52 |
+
|
53 |
# Split the text into chunks
|
54 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
55 |
docs = text_splitter.split_documents(pdf_data)
|
56 |
+
|
57 |
# Create a Chroma vector store
|
58 |
embeddings = HuggingFaceEmbeddings(model_name="embaas/sentence-transformers-multilingual-e5-base")
|
59 |
db = Chroma.from_documents(docs, embeddings)
|
60 |
+
|
61 |
# Initialize message history for conversation
|
62 |
message_history = ChatMessageHistory()
|
63 |
+
|
64 |
# Memory for conversational context
|
65 |
memory = ConversationBufferMemory(
|
66 |
+
memory_key="chat_history",
|
67 |
+
output_key="answer",
|
68 |
+
chat_memory=message_history,
|
69 |
+
return_messages=True,
|
70 |
+
)
|
71 |
+
|
72 |
# Create a chain that uses the Chroma vector store
|
73 |
chain = ConversationalRetrievalChain.from_llm(
|
74 |
+
llm=llm,
|
75 |
+
chain_type="stuff",
|
76 |
+
retriever=db.as_retriever(),
|
77 |
+
memory=memory,
|
78 |
+
return_source_documents=False,
|
79 |
+
combine_docs_chain_kwargs={'prompt': prompt}
|
80 |
+
)
|
81 |
+
|
82 |
if question:
|
83 |
+
with st.chat_message("user"):
|
|
|
84 |
st.markdown(question)
|
|
|
|
|
85 |
with st.chat_message("assistant"):
|
|
|
86 |
res = chain({"question": question})
|
87 |
answer = res["answer"]
|
88 |
st.write(f"{answer}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
except Exception as e:
|
91 |
st.error(f"An error occurred: {e}")
|
|