File size: 6,072 Bytes
34253f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import torchvision\n",
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "\n",
    "from torch.utils.data import DataLoader\n",
    "from torchvision import datasets\n",
    "from torchvision import transforms\n",
    "from torchvision.utils import save_image\n",
    "\n",
    "import numpy as np\n",
    "import datetime\n",
    "\n",
    "from matplotlib.pyplot import imshow, imsave\n",
    "# %matplotlib inline\n",
    "\n",
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_sample_image(generator, noise_dim):\n",
    "    z = torch.randn(100, noise_dim).to(device)\n",
    "    generated_images = generator(z).view(100, 28, 28)\n",
    "    result = generated_images.cpu().data.numpy()\n",
    "    img = np.zeros([280, 280])\n",
    "    for j in range(10):\n",
    "        img[j * 28:(j + 1) * 28] = np.concatenate([x for x in result[j * 10:(j + 1) * 10]], axis=-1)\n",
    "    return img\n",
    "\n",
    "class Discriminator(nn.Module):\n",
    "    def __init__(self, input_size=784, num_classes=1):\n",
    "        super(Discriminator, self).__init__()\n",
    "        self.layers = nn.Sequential(\n",
    "            nn.Linear(input_size, 512),\n",
    "            nn.LeakyReLU(0.2),\n",
    "            nn.Linear(512, 256),\n",
    "            nn.LeakyReLU(0.2),\n",
    "            nn.Linear(256, num_classes),\n",
    "            nn.Sigmoid(),\n",
    "        )\n",
    "\n",
    "    def forward(self, x):\n",
    "        x = x.view(x.size(0), -1)\n",
    "        x = self.layers(x)\n",
    "        return x\n",
    "\n",
    "class Generator(nn.Module):\n",
    "    def __init__(self, input_size=100, num_classes=784):\n",
    "        super(Generator, self).__init__()\n",
    "        self.layers = nn.Sequential(\n",
    "            nn.Linear(input_size, 128),\n",
    "            nn.LeakyReLU(0.2),\n",
    "            nn.Linear(128, 256),\n",
    "            nn.BatchNorm1d(256),\n",
    "            nn.LeakyReLU(0.2),\n",
    "            nn.Linear(256, 512),\n",
    "            nn.BatchNorm1d(512),\n",
    "            nn.LeakyReLU(0.2),\n",
    "            nn.Linear(512, 1024),\n",
    "            nn.BatchNorm1d(1024),\n",
    "            nn.LeakyReLU(0.2),\n",
    "            nn.Linear(1024, num_classes),\n",
    "            nn.Tanh()\n",
    "        )\n",
    "\n",
    "    def forward(self, x):\n",
    "        x = self.layers(x)\n",
    "        x = x.view(x.size(0), 1, 28, 28)\n",
    "        return x\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "n_noise = 100\n",
    "\n",
    "discriminator = Discriminator().to(device)\n",
    "generator = Generator().to(device)\n",
    "\n",
    "transform = transforms.Compose([transforms.ToTensor(),\n",
    "                                transforms.Normalize(mean=[0.5],\n",
    "                                std=[0.5])]\n",
    ")\n",
    "\n",
    "mnist = datasets.MNIST(root='../data/', train=True, transform=transform, download=True)\n",
    "\n",
    "batch_size = 64\n",
    "\n",
    "data_loader = DataLoader(dataset=mnist, batch_size=batch_size, shuffle=True, drop_last=True)\n",
    "\n",
    "loss_fn = nn.BCELoss()\n",
    "d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))\n",
    "g_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))\n",
    "\n",
    "max_epoch = 50\n",
    "step = 0\n",
    "n_critic = 1\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "d_labels = torch.ones(batch_size, 1).to(device)\n",
    "d_fakes = torch.zeros(batch_size, 1).to(device)\n",
    "\n",
    "# Training loop\n",
    "for epoch in range(max_epoch):\n",
    "    for idx, (images, _) in enumerate(data_loader):\n",
    "        real_images = images.to(device)\n",
    "        real_outputs = discriminator(real_images)\n",
    "        d_real_loss = loss_fn(real_outputs, d_labels)\n",
    "\n",
    "        fake_noise = torch.randn(batch_size, n_noise).to(device)\n",
    "        fake_images = generator(fake_noise)\n",
    "        fake_outputs = discriminator(fake_images.detach())\n",
    "        d_fake_loss = loss_fn(fake_outputs, d_fakes)\n",
    "\n",
    "        d_loss = d_real_loss + d_fake_loss\n",
    "\n",
    "        discriminator.zero_grad()\n",
    "        d_loss.backward()\n",
    "        d_optimizer.step()\n",
    "\n",
    "        if step % n_critic == 0:\n",
    "            fake_outputs = discriminator(generator(fake_noise))\n",
    "            g_loss = loss_fn(fake_outputs, d_labels)\n",
    "\n",
    "            generator.zero_grad()\n",
    "            g_loss.backward()\n",
    "            g_optimizer.step()\n",
    "\n",
    "            if step % 1000 == 0:\n",
    "                generator.eval()\n",
    "                img = get_sample_image(generator, n_noise)\n",
    "                # imsave('samples/{}_step{}.jpg'.format('gans', str(step).zfill(3)), img, cmap='gray')\n",
    "                generator.train()\n",
    "            step += 1\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "generator.eval()\n",
    "imshow(get_sample_image(generator, n_noise), cmap='gray')\n",
    "\n",
    "torch.save(discriminator.state_dict(), 'discriminator.pth')\n",
    "torch.save(generator.state_dict(), 'generator.pth')\n"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "name": "python"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}