File size: 24,972 Bytes
646bd9e 67fa189 174cd37 67fa189 174cd37 67fa189 646bd9e 67fa189 646bd9e 67fa189 174cd37 df6182e d812385 67fa189 1a494e6 174cd37 cf6aebf 67fa189 174cd37 67fa189 cf6aebf 67fa189 7cb14dd 67fa189 ce217e0 c10f4f8 67fa189 646bd9e 67fa189 646bd9e 67fa189 df6182e 646bd9e 7cb14dd 174cd37 7cb14dd 174cd37 ce217e0 174cd37 67fa189 174cd37 67fa189 174cd37 67fa189 1a494e6 67fa189 1a494e6 174cd37 d812385 67fa189 174cd37 7cb14dd ce217e0 7cb14dd ce217e0 7cb14dd ce217e0 7cb14dd ce217e0 7cb14dd ce217e0 174cd37 67fa189 174cd37 67fa189 ce217e0 174cd37 67fa189 174cd37 cf6aebf 67fa189 cf6aebf 67fa189 cf6aebf 67fa189 cf6aebf 67fa189 cf6aebf dc83cd7 67fa189 cf6aebf 67fa189 174cd37 7cb14dd 174cd37 67fa189 ce217e0 67fa189 174cd37 67fa189 174cd37 67fa189 174cd37 67fa189 ce217e0 174cd37 67fa189 ce217e0 174cd37 67fa189 174cd37 67fa189 bd20950 67fa189 ce217e0 67fa189 ce217e0 67fa189 ce217e0 67fa189 ce217e0 67fa189 ce217e0 67fa189 2b591f4 646bd9e 2b591f4 67fa189 dc83cd7 67fa189 646bd9e ce217e0 67fa189 ce217e0 67fa189 174cd37 dc83cd7 174cd37 dc83cd7 df6182e dc83cd7 174cd37 dc83cd7 174cd37 ce217e0 df6182e 174cd37 df6182e ce217e0 df6182e ce217e0 df6182e 174cd37 df6182e 174cd37 df6182e 628fe8f df6182e dc83cd7 df6182e b160148 646bd9e b160148 646bd9e 174cd37 646bd9e ce217e0 88b8536 ce217e0 525f3d3 ce217e0 174cd37 6eea781 88b8536 6eea781 bd20950 525f3d3 bd20950 174cd37 646bd9e bbc133a 525f3d3 dc83cd7 6eea781 bd20950 bbc133a 7cb14dd 174cd37 67fa189 7cb14dd 174cd37 7cb14dd ce217e0 174cd37 646bd9e d812385 174cd37 6eea781 7cb14dd 174cd37 646bd9e 174cd37 6eea781 174cd37 bd20950 174cd37 7cb14dd 174cd37 67fa189 ce217e0 67fa189 174cd37 67fa189 174cd37 bd20950 174cd37 6eea781 174cd37 6eea781 174cd37 b160148 6eea781 646bd9e 7cb14dd ce217e0 7cb14dd ce217e0 7cb14dd 646bd9e 67fa189 ce217e0 67fa189 ce217e0 67fa189 646bd9e 174cd37 67fa189 ce217e0 646bd9e bd20950 174cd37 bd20950 7cb14dd 174cd37 bd20950 174cd37 df6182e 174cd37 7cb14dd 174cd37 7cb14dd 174cd37 df6182e 174cd37 ce217e0 df6182e 646bd9e 174cd37 bd20950 174cd37 646bd9e 2b591f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
"""A Gradio app for anonymizing text data using FHE."""
import base64
import os
import re
import subprocess
import time
import uuid
from typing import Dict, List
import gradio as gr
import numpy
import pandas as pd
import requests
from fhe_anonymizer import FHEAnonymizer
from openai import OpenAI
from utils_demo import *
from concrete.ml.deployment import FHEModelClient
# Ensure the directory is clean before starting processes or reading files
clean_directory()
anonymizer = FHEAnonymizer()
client = OpenAI(api_key=os.environ.get("openaikey"))
# Start the Uvicorn server hosting the FastAPI app
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
time.sleep(3)
# Load data from files required for the application
UUID_MAP = read_json(MAPPING_UUID_PATH)
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH)
MAPPING_ANONYMIZED_SENTENCES = read_pickle(MAPPING_ANONYMIZED_SENTENCES_PATH)
MAPPING_ENCRYPTED_SENTENCES = read_pickle(MAPPING_ENCRYPTED_SENTENCES_PATH)
ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n")
MAPPING_DOC_EMBEDDING = read_pickle(MAPPING_DOC_EMBEDDING_PATH)
print(f"{ORIGINAL_DOCUMENT=}\n")
print(f"{MAPPING_DOC_EMBEDDING.keys()=}")
# 4. Data Processing and Operations (No specific operations shown here, assuming it's part of anonymizer or client usage)
# 5. Utilizing External Services or APIs
# (Assuming client initialization and anonymizer setup are parts of using external services or application-specific logic)
# Generate a random user ID for this session
USER_ID = numpy.random.randint(0, 2**32)
def select_static_anonymized_sentences_fn(selected_sentences: List):
selected_sentences = [MAPPING_ANONYMIZED_SENTENCES[sentence] for sentence in selected_sentences]
anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0])
anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence]
return "\n\n".join(anonymized_selected_sentence)
def key_gen_fn() -> Dict:
"""Generate keys for a given user."""
print("------------ Step 1: Key Generation:")
print(f"Your user ID is: {USER_ID}....")
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
client.load()
# Creates the private and evaluation keys on the client side
client.generate_private_and_evaluation_keys()
# Get the serialized evaluation keys
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
assert isinstance(serialized_evaluation_keys, bytes)
# Save the evaluation key
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
write_bytes(evaluation_key_path, serialized_evaluation_keys)
# anonymizer.generate_key()
if not evaluation_key_path.is_file():
error_message = (
f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
)
print(error_message)
return {gen_key_btn: gr.update(value=error_message)}
else:
print("Keys have been generated ✅")
return {gen_key_btn: gr.update(value="Keys have been generated ✅")}
def encrypt_doc_fn(doc):
print(f"\n------------ Step 2.1: Doc encryption: {doc=}")
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
return {encrypted_doc_box: gr.update(value="Error ❌: Please generate the key first!", lines=10)}
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
client.load()
encrypted_tokens = []
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", ' '.join(doc))
for token in tokens:
if token.strip() and re.match(r"\w+", token):
emb_x = MAPPING_DOC_EMBEDDING[token]
assert emb_x.shape == (1, 1024)
encrypted_x = client.quantize_encrypt_serialize(emb_x)
assert isinstance(encrypted_x, bytes)
encrypted_tokens.append(encrypted_x)
print("Doc encrypted ✅ on Client Side")
# No need to save it
# write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_doc", b"".join(encrypted_tokens))
encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens]
return {
encrypted_doc_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=10),
anonymized_doc_output: gr.update(visible=True, value=None),
}
def encrypt_query_fn(query):
print(f"\n------------ Step 2: Query encryption: {query=}")
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
return {output_encrypted_box: gr.update(value="Error ❌: Please generate the key first!", lines=8)}
if is_user_query_valid(query):
return {
query_box: gr.update(
value=(
"Unable to process ❌: The request exceeds the length limit or falls "
"outside the scope of this document. Please refine your query."
)
)
}
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
client.load()
encrypted_tokens = []
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query)
for token in tokens:
# 1- Ignore non-words tokens
if bool(re.match(r"^\s+$", token)):
continue
# 2- Directly append non-word tokens or whitespace to processed_tokens
# Prediction for each word
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER)
encrypted_x = client.quantize_encrypt_serialize(emb_x)
assert isinstance(encrypted_x, bytes)
encrypted_tokens.append(encrypted_x)
print("Data encrypted ✅ on Client Side")
assert len({len(token) for token in encrypted_tokens}) == 1
write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input", b"".join(encrypted_tokens))
write_bytes(
KEYS_DIR / f"{USER_ID}/encrypted_input_len", len(encrypted_tokens[0]).to_bytes(10, "big")
)
encrypted_quant_tokens_hex = [token.hex()[500:580] for token in encrypted_tokens]
return {
output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=8),
anonymized_query_output: gr.update(visible=True, value=None),
identified_words_output_df: gr.update(visible=False, value=None),
}
def send_input_fn(query) -> Dict:
"""Send the encrypted data and the evaluation key to the server."""
print("------------ Step 3.1: Send encrypted_data to the Server")
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
encrypted_input_len_path = KEYS_DIR / f"{USER_ID}/encrypted_input_len"
if not evaluation_key_path.is_file():
error_message = (
"Error Encountered While Sending Data to the Server: "
f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
)
return {anonymized_query_output: gr.update(value=error_message)}
if not encrypted_input_path.is_file():
error_message = (
"Error Encountered While Sending Data to the Server: The data has not been encrypted "
f"correctly on the client side - {encrypted_input_path.is_file()=}"
)
return {anonymized_query_output: gr.update(value=error_message)}
# Define the data and files to post
data = {"user_id": USER_ID, "input": query}
files = [
("files", open(evaluation_key_path, "rb")),
("files", open(encrypted_input_path, "rb")),
("files", open(encrypted_input_len_path, "rb")),
]
# Send the encrypted input and evaluation key to the server
url = SERVER_URL + "send_input"
with requests.post(
url=url,
data=data,
files=files,
) as resp:
print("Data sent to the server ✅" if resp.ok else "Error ❌ in sending data to the server")
def run_fhe_in_server_fn() -> Dict:
"""Run in FHE the anonymization of the query"""
print("------------ Step 3.2: Run in FHE on the Server Side")
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
if not evaluation_key_path.is_file():
error_message = (
"Error Encountered While Sending Data to the Server: "
f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
)
return {anonymized_query_output: gr.update(value=error_message)}
if not encrypted_input_path.is_file():
error_message = (
"Error Encountered While Sending Data to the Server: The data has not been encrypted "
f"correctly on the client side - {encrypted_input_path.is_file()=}"
)
return {anonymized_query_output: gr.update(value=error_message)}
data = {
"user_id": USER_ID,
}
url = SERVER_URL + "run_fhe"
with requests.post(
url=url,
data=data,
) as response:
if not response.ok:
return {
anonymized_query_output: gr.update(
value=(
"⚠️ An error occurred on the Server Side. "
"Please check connectivity and data transmission."
),
),
}
else:
time.sleep(1)
print(f"The query anonymization was computed in {response.json():.2f} s per token.")
def get_output_fn() -> Dict:
print("------------ Step 3.3: Get the output from the Server Side")
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
error_message = (
"Error Encountered While Sending Data to the Server: "
"The key has not been generated correctly"
)
return {anonymized_query_output: gr.update(value=error_message)}
if not (KEYS_DIR / f"{USER_ID}/encrypted_input").is_file():
error_message = (
"Error Encountered While Sending Data to the Server: "
"The data has not been encrypted correctly on the client side"
)
return {anonymized_query_output: gr.update(value=error_message)}
data = {
"user_id": USER_ID,
}
# Retrieve the encrypted output
url = SERVER_URL + "get_output"
with requests.post(
url=url,
data=data,
) as response:
if response.ok:
print("Data received ✅ from the remote Server")
response_data = response.json()
encrypted_output_base64 = response_data["encrypted_output"]
length_encrypted_output_base64 = response_data["length"]
# Decode the base64 encoded data
encrypted_output = base64.b64decode(encrypted_output_base64)
length_encrypted_output = base64.b64decode(length_encrypted_output_base64)
# Save the encrypted output to bytes in a file as it is too large to pass through
# regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output", encrypted_output)
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len", length_encrypted_output)
else:
print("Error ❌ in getting data to the server")
def decrypt_fn(text) -> Dict:
"""Dencrypt the data on the `Client Side`."""
print("------------ Step 4: Dencrypt the data on the `Client Side`")
# Get the encrypted output path
encrypted_output_path = CLIENT_DIR / f"{USER_ID}_encrypted_output"
if not encrypted_output_path.is_file():
error_message = """⚠️ Please ensure that: \n
- the connectivity \n
- the query has been submitted \n
- the evaluation key has been generated \n
- the server processed the encrypted data \n
- the Client received the data from the Server before decrypting the prediction
"""
print(error_message)
return error_message, None
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
client.load()
# Load the encrypted output as bytes
encrypted_output = read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output")
length = int.from_bytes(read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len"), "big")
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", text)
decrypted_output, identified_words_with_prob = [], []
i = 0
for token in tokens:
# Directly append non-word tokens or whitespace to processed_tokens
if bool(re.match(r"^\s+$", token)):
continue
else:
encrypted_token = encrypted_output[i : i + length]
prediction_proba = client.deserialize_decrypt_dequantize(encrypted_token)
probability = prediction_proba[0][1]
i += length
if probability >= 0.77:
identified_words_with_prob.append((token, probability))
# Use the existing UUID if available, otherwise generate a new one
tmp_uuid = UUID_MAP.get(token, str(uuid.uuid4())[:8])
decrypted_output.append(tmp_uuid)
UUID_MAP[token] = tmp_uuid
else:
decrypted_output.append(token)
# Update the UUID map with query.
write_json(MAPPING_UUID_PATH, UUID_MAP)
# Removing Spaces Before Punctuation:
anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", " ".join(decrypted_output))
# Convert the list of identified words and probabilities into a DataFrame
if identified_words_with_prob:
identified_df = pd.DataFrame(
identified_words_with_prob, columns=["Identified Words", "Probability"]
)
else:
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
print("Decryption done ✅ on Client Side")
return anonymized_text, identified_df
def anonymization_with_fn(selected_sentences, query):
encrypt_query_fn(query)
send_input_fn(query)
run_fhe_in_server_fn()
get_output_fn()
anonymized_text, identified_df = decrypt_fn(query)
return {
anonymized_doc_output: gr.update(value=select_static_anonymized_sentences_fn(selected_sentences)),
anonymized_query_output: gr.update(value=anonymized_text),
identified_words_output_df: gr.update(value=identified_df, visible=False),
}
def query_chatgpt_fn(anonymized_query, anonymized_document):
print("------------ Step 5: ChatGPT communication")
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
error_message = "Error ❌: Please generate the key first!"
return {chatgpt_response_anonymized: gr.update(value=error_message)}
if not (CLIENT_DIR / f"{USER_ID}_encrypted_output").is_file():
error_message = "Error ❌: Please encrypt your query first!"
return {chatgpt_response_anonymized: gr.update(value=error_message)}
context_prompt = read_txt(PROMPT_PATH)
# Prepare prompt
query = (
"Document content:\n```\n"
+ anonymized_document
+ "\n\n```"
+ "Query:\n```\n"
+ anonymized_query
+ "\n```"
)
print(f'Prompt of CHATGPT:\n{query}')
completion = client.chat.completions.create(
model="gpt-4-1106-preview", # Replace with "gpt-4" if available
messages=[
{"role": "system", "content": context_prompt},
{"role": "user", "content": query},
],
)
anonymized_response = completion.choices[0].message.content
uuid_map = read_json(MAPPING_UUID_PATH)
inverse_uuid_map = {
v: k for k, v in uuid_map.items()
} # TODO load the inverse mapping from disk for efficiency
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", anonymized_response)
processed_tokens = []
for token in tokens:
# Directly append non-word tokens or whitespace to processed_tokens
if not token.strip() or not re.match(r"\w+", token):
processed_tokens.append(token)
continue
if token in inverse_uuid_map:
processed_tokens.append(inverse_uuid_map[token])
else:
processed_tokens.append(token)
deanonymized_response = "".join(processed_tokens)
return {chatgpt_response_anonymized: gr.update(value=anonymized_response),
chatgpt_response_deanonymized: gr.update(value=deanonymized_response)}
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")
with demo:
gr.Markdown(
"""
<p align="center">
<img width=200 src="file/images/logos/zama.jpg">
</p>
<h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1>
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
—
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
—
<a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
—
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
</p>
"""
)
gr.Markdown(
"""
<p align="center" style="font-size: 16px;">
Anonymization is the process of removing personally identifiable information (PII) data from
a document in order to protect individual privacy.</p>
<p align="center" style="font-size: 16px;">
Encrypted anonymization uses Fully Homomorphic Encryption (FHE) to anonymize personally
identifiable information (PII) within encrypted documents, enabling computations to be
performed on the encrypted data.</p>
<p align="center" style="font-size: 16px;">
In the example above, we're showing how encrypted anonymization can be leveraged to use LLM
services such as ChatGPT in a privacy-preserving manner.</p>
"""
)
gr.Markdown(
"""
<p align="center">
<img width="75%" height="30%" src="https://raw.githubusercontent.com/kcelia/Img/main/fhe_anonymization_banner.png">
</p>
"""
)
########################## Key Gen Part ##########################
gr.Markdown(
"## Step 1: Generate the keys\n\n"
"""In Fully Homomorphic Encryption (FHE) methods, two types of keys are created. The first
type, called secret keys, are used to encrypt and decrypt the user's data. The second type,
called evaluation keys, enables a server to work on the encrypted data without seeing the
actual data.
"""
)
gen_key_btn = gr.Button("Generate the secret and evaluation keys")
gen_key_btn.click(
key_gen_fn,
inputs=[],
outputs=[gen_key_btn],
)
########################## Main document Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 2.1: Select the document you want to encrypt\n\n"
"""To make it simple, we pre-compiled the following document, but you are free to choose
on which part you want to run this example.
"""
)
with gr.Row():
with gr.Column(scale=5):
original_sentences_box = gr.CheckboxGroup(
ORIGINAL_DOCUMENT,
value=ORIGINAL_DOCUMENT,
label="Contract:",
show_label=True,
)
with gr.Column(scale=1, min_width=6):
gr.HTML("<div style='height: 77px;'></div>")
encrypt_doc_btn = gr.Button("Encrypt the document")
with gr.Column(scale=5):
encrypted_doc_box = gr.Textbox(
label="Encrypted document:", show_label=True, interactive=False, lines=10
)
########################## User Query Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 2.2: Select the prompt you want to encrypt\n\n"
"""Please choose from the predefined options in
<span style='color:grey'>“Prompt examples”</span> or craft a custom question in
the <span style='color:grey'>“Customized prompt”</span> text box.
Remain concise and relevant to the context. Any off-topic query will not be processed.""")
with gr.Row():
with gr.Column(scale=5):
with gr.Column(scale=5):
default_query_box = gr.Dropdown(
list(DEFAULT_QUERIES.values()), label="PROMPT EXAMPLES:"
)
gr.Markdown("Or")
query_box = gr.Textbox(
value="What is Kate international bank account number?", label="CUSTOMIZED PROMPT:", interactive=True
)
default_query_box.change(
fn=lambda default_query_box: default_query_box,
inputs=[default_query_box],
outputs=[query_box],
)
with gr.Column(scale=1, min_width=6):
gr.HTML("<div style='height: 77px;'></div>")
encrypt_query_btn = gr.Button("Encrypt the prompt")
# gr.HTML("<div style='height: 50px;'></div>")
with gr.Column(scale=5):
output_encrypted_box = gr.Textbox(
label="Encrypted anonymized query that will be sent to the anonymization server:",
lines=8,
)
########################## FHE processing Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 3: Anonymize the document and the prompt using FHE")
gr.Markdown(
"""Once the client encrypts the document and the prompt locally, it will be sent to a remote
server to perform the anonymization on encrypted data. When the computation is done, the
server will return the result to the client for decryption.
"""
)
run_fhe_btn = gr.Button("Anonymize using FHE")
with gr.Row():
with gr.Column(scale=5):
anonymized_doc_output = gr.Textbox(
label="Decrypted and anonymized document", lines=10, interactive=True
)
with gr.Column(scale=5):
anonymized_query_output = gr.Textbox(
label="Decrypted and anonymized prompt", lines=10, interactive=True
)
identified_words_output_df = gr.Dataframe(label="Identified words:", visible=False)
encrypt_doc_btn.click(
fn=encrypt_doc_fn,
inputs=[original_sentences_box],
outputs=[encrypted_doc_box, anonymized_doc_output],
)
encrypt_query_btn.click(
fn=encrypt_query_fn,
inputs=[query_box],
outputs=[
query_box,
output_encrypted_box,
anonymized_query_output,
identified_words_output_df,
],
)
run_fhe_btn.click(
anonymization_with_fn,
inputs=[original_sentences_box, query_box],
outputs=[anonymized_doc_output, anonymized_query_output, identified_words_output_df],
)
########################## ChatGpt Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 4: Send anonymized prompt to ChatGPT")
gr.Markdown(
"""After securely anonymizing the query with FHE,
you can forward it to ChatGPT without having any concern about information leakage."""
)
chatgpt_button = gr.Button("Query ChatGPT")
with gr.Row():
chatgpt_response_anonymized = gr.Textbox(label="ChatGPT's anonymized response:", lines=5)
chatgpt_response_deanonymized = gr.Textbox(
label="ChatGPT's non-anonymized response:", lines=5
)
chatgpt_button.click(
query_chatgpt_fn,
inputs=[anonymized_query_output, anonymized_doc_output],
outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized],
)
gr.Markdown(
"""**Please note**: As this space is intended solely for demonstration purposes, some
private information may be missed during by the anonymization algorithm. Please validate the
following query before sending it to ChatGPT."""
)
# Launch the app
demo.launch(share=False)
|