File size: 11,018 Bytes
9a997e4 1ba3f22 9a997e4 affc682 9a997e4 bc345ce 9a997e4 1ad0c1c 74c0c8e 1ba3f22 060d7fa 8d5cb63 060d7fa 1ba3f22 747c295 1ba3f22 747c295 bc345ce bf71bfa bc345ce 74c0c8e 747c295 e3103dd 747c295 1ba3f22 c119738 18ba8c1 8d5cb63 1ad0c1c 8d5cb63 8a003cf bc345ce 1ba3f22 c119738 9a997e4 c119738 1ba3f22 0287aa5 8a003cf 1ba3f22 c119738 9a997e4 c119738 1ba3f22 0287aa5 8a003cf 0287aa5 1ba3f22 c119738 1ba3f22 9a997e4 1ba3f22 74c0c8e 747c295 1ba3f22 747c295 18ba8c1 747c295 1ba3f22 747c295 1ba3f22 74c0c8e 747c295 1ba3f22 747c295 1ba3f22 1ad0c1c 1ba3f22 747c295 8a003cf 747c295 1ba3f22 747c295 7ba6721 bf71bfa 7ba6721 1ba3f22 0e9fc02 1ba3f22 1ad0c1c 9a997e4 1ba3f22 1ad0c1c 74c0c8e 9a997e4 74c0c8e 9a997e4 74c0c8e 9a997e4 1ba3f22 74c0c8e 9a997e4 1ba3f22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
"""A gradio app for credit card approval prediction using FHE."""
import subprocess
import time
import gradio as gr
from settings import (
REPO_DIR,
ACCOUNT_MIN_MAX,
CHILDREN_MIN_MAX,
INCOME_MIN_MAX,
AGE_MIN_MAX,
EMPLOYED_MIN_MAX,
FAMILY_MIN_MAX,
INCOME_TYPES,
OCCUPATION_TYPES,
HOUSING_TYPES,
EDUCATION_TYPES,
FAMILY_STATUS,
)
from backend import (
keygen_send,
pre_process_encrypt_send_user,
pre_process_encrypt_send_bank,
pre_process_encrypt_send_third_party,
run_fhe,
get_output_and_decrypt,
years_employed_encrypt_run_decrypt,
)
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
time.sleep(3)
demo = gr.Blocks()
print("Starting the demo...")
with demo:
gr.Markdown(
"""
<p align="center">
<img width=200 src="file/images/logos/zama.jpg">
</p>
<h1 align="center">Encrypted Credit Card Approval Prediction Using Fully Homomorphic Encryption</h1>
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
—
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
—
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
—
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
</p>
<p align="center">
<img src="file/images/banner.png" width="70%" height="70%">
</p>
"""
)
gr.Markdown("# Client side")
gr.Markdown("## Step 1: Generate the keys.")
gr.Markdown(
"""
- The private key is used to encrypt and decrypt the data and shall never be shared.
- The evaluation key is a public key that the server needs to process encrypted data. It is
therefore transmitted to the server for further processing as well.
"""
)
keygen_button = gr.Button("Generate the keys and send evaluation key to the server.")
evaluation_key = gr.Textbox(
label="Evaluation key representation:", max_lines=2, interactive=False
)
client_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False)
# Button generate the keys
keygen_button.click(
keygen_send,
outputs=[client_id, evaluation_key, keygen_button],
)
gr.Markdown("## Step 2: Fill in some information.")
gr.Markdown(
"""
Select the information that corresponds to the profile you want to evaluate. Three sources
of information are represented in this model:
- a user's personal information in order to evaluate his/her credit card eligibility;
- the user’s bank account history, which provides any type of information on the user's
banking information relevant to the decision (here, we consider duration of account);
- and third party information, which represents any other information (here, employment
history) that could provide additional insight relevant to the decision.
"""
)
with gr.Row():
with gr.Column():
gr.Markdown("### User")
bool_inputs = gr.CheckboxGroup(["Car", "Property", "Mobile phone"], label="Which of the following do you actively hold or own?")
num_children = gr.Slider(**CHILDREN_MIN_MAX, step=1, label="Number of children", info="How many children do you have ?")
household_size = gr.Slider(**FAMILY_MIN_MAX, step=1, label="Household size", info="How many members does your household have ?")
total_income = gr.Slider(**INCOME_MIN_MAX, label="Income", info="What's you total yearly income (in euros) ?")
age = gr.Slider(**AGE_MIN_MAX, step=1, label="Age", info="How old are you ?")
with gr.Column():
income_type = gr.Dropdown(choices=INCOME_TYPES, value=INCOME_TYPES[0], label="Income type", info="What is your main type of income ?")
education_type = gr.Dropdown(choices=EDUCATION_TYPES, value=EDUCATION_TYPES[0], label="Education", info="What is your education background ?")
family_status = gr.Dropdown(choices=FAMILY_STATUS, value=FAMILY_STATUS[0], label="Family", info="What is your family status ?")
occupation_type = gr.Dropdown(choices=OCCUPATION_TYPES, value=OCCUPATION_TYPES[0], label="Occupation", info="What is your main occupation ?")
housing_type = gr.Dropdown(choices=HOUSING_TYPES, value=HOUSING_TYPES[0], label="Housing", info="In what type of housing do you live ?")
with gr.Column():
encrypt_button_user = gr.Button("Encrypt the inputs and send to server.")
encrypted_input_user = gr.Textbox(
label="Encrypted input representation:", max_lines=2, interactive=False
)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Bank ")
account_age = gr.Slider(**ACCOUNT_MIN_MAX, step=1, label="Account age (months)", info="How long have this person had this bank account (in months) ?")
with gr.Column():
encrypt_button_bank = gr.Button("Encrypt the inputs and send to server.")
encrypted_input_bank = gr.Textbox(
label="Encrypted input representation:", max_lines=2, interactive=False
)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Third party ")
employed = gr.Radio(["Yes", "No"], label="Is the person employed ?", value="Yes")
years_employed = gr.Slider(**EMPLOYED_MIN_MAX, step=1, label="Years of employment", info="How long have this person been employed (in years) ?")
with gr.Column():
encrypt_button_third_party = gr.Button("Encrypt the inputs and send to server.")
encrypted_input_third_party = gr.Textbox(
label="Encrypted input representation:", max_lines=2, interactive=False
)
# Button to pre-process, generate the key, encrypt and send the user inputs from the client
# side to the server
encrypt_button_user.click(
pre_process_encrypt_send_user,
inputs=[client_id, bool_inputs, num_children, household_size, total_income, age, \
income_type, education_type, family_status, occupation_type, housing_type],
outputs=[encrypted_input_user],
)
# Button to pre-process, generate the key, encrypt and send the bank inputs from the client
# side to the server
encrypt_button_bank.click(
pre_process_encrypt_send_bank,
inputs=[client_id, account_age],
outputs=[encrypted_input_bank],
)
# Button to pre-process, generate the key, encrypt and send the third party inputs from the
# client side to the server
encrypt_button_third_party.click(
pre_process_encrypt_send_third_party,
inputs=[client_id, employed, years_employed],
outputs=[encrypted_input_third_party],
)
gr.Markdown("# Server side")
gr.Markdown(
"""
Once the server receives the encrypted inputs, it can compute the prediction without ever
needing to decrypt any value.
This server employs an [XGBoost](https://github.com/dmlc/xgboost) classifier model that has
been trained on a synthetic data-set.
"""
)
gr.Markdown("## Step 4: Run FHE execution.")
execute_fhe_button = gr.Button("Run FHE execution.")
fhe_execution_time = gr.Textbox(
label="Total FHE execution time (in seconds):", max_lines=1, interactive=False
)
# Button to send the encodings to the server using post method
execute_fhe_button.click(run_fhe, inputs=[client_id], outputs=[fhe_execution_time])
gr.Markdown("# Client side")
gr.Markdown(
"""
Once the server completed the inference, the encrypted output is returned to the user.
"""
)
gr.Markdown("## Step 5: Receive the encrypted output from the server and decrypt.")
gr.Markdown(
"""
The first value displayed below is a shortened byte representation of the actual encrypted
output.
The user is then able to decrypt the value using its private key.
"""
)
get_output_button = gr.Button("Receive the encrypted output from the server.")
encrypted_output_representation = gr.Textbox(
label="Encrypted output representation: ", max_lines=2, interactive=False
)
prediction_output = gr.Textbox(
label="Prediction", max_lines=1, interactive=False
)
# Button to send the encodings to the server using post method
get_output_button.click(
get_output_and_decrypt,
inputs=[client_id],
outputs=[prediction_output, encrypted_output_representation],
)
gr.Markdown("## Step 6 (optional): Explain the prediction.")
gr.Markdown(
"""
In case the credit card is likely to be denied, the user can run a second model in order to
Explain the prediction better. More specifically, this new model indicates the number of
additional years of employment that could be required in order to increase the chance of
credit card approval.
All of the above steps are combined into a single button for simplicity. The following
button therefore encrypts the same inputs (except the years of employment) from all three
parties, runs the new prediction in FHE and decrypts the output.
"""
)
years_employed_prediction_button = gr.Button(
"Encrypt the inputs, compute in FHE and decrypt the output."
)
years_employed_prediction = gr.Textbox(
label="Additional years of employed required.", max_lines=1, interactive=False
)
# Button to explain the prediction
years_employed_prediction_button.click(
years_employed_encrypt_run_decrypt,
inputs=[client_id, prediction_output, bool_inputs, num_children, household_size, \
total_income, age, income_type, education_type, family_status, occupation_type, \
housing_type, account_age, employed, years_employed],
outputs=[years_employed_prediction],
)
gr.Markdown(
"The app was built with [Concrete-ML](https://github.com/zama-ai/concrete-ml), a "
"Privacy-Preserving Machine Learning (PPML) open-source set of tools by [Zama](https://zama.ai/). "
"Try it yourself and don't forget to star on Github ⭐."
)
demo.launch(share=False)
|