File size: 3,062 Bytes
1ba3f22 9a997e4 1ba3f22 74c0c8e c119738 1ba3f22 74c0c8e 9a997e4 18ba8c1 9a997e4 1ba3f22 9a997e4 993f2a6 c119738 a241bb3 74c0c8e c119738 74c0c8e 18ba8c1 c119738 74c0c8e 9a997e4 74c0c8e a241bb3 18ba8c1 a241bb3 31284a7 74c0c8e a241bb3 9a997e4 31284a7 9a997e4 affc682 993f2a6 9a997e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
"All constants used in the project."
from pathlib import Path
import pandas
# The directory of this project
REPO_DIR = Path(__file__).parent
# Main necessary directories
DEPLOYMENT_PATH = REPO_DIR / "deployment_files"
FHE_KEYS = REPO_DIR / ".fhe_keys"
CLIENT_FILES = REPO_DIR / "client_files"
SERVER_FILES = REPO_DIR / "server_files"
# ALl deployment directories
APPROVAL_DEPLOYMENT_PATH = DEPLOYMENT_PATH / "approval_model"
EXPLAIN_DEPLOYMENT_PATH = DEPLOYMENT_PATH / "explain_model"
# Path targeting pre-processor saved files
PRE_PROCESSOR_USER_PATH = DEPLOYMENT_PATH / 'pre_processor_user.pkl'
PRE_PROCESSOR_BANK_PATH = DEPLOYMENT_PATH / 'pre_processor_bank.pkl'
PRE_PROCESSOR_THIRD_PARTY_PATH = DEPLOYMENT_PATH / 'pre_processor_third_party.pkl'
# Create the necessary directories
FHE_KEYS.mkdir(exist_ok=True)
CLIENT_FILES.mkdir(exist_ok=True)
SERVER_FILES.mkdir(exist_ok=True)
# Store the server's URL
SERVER_URL = "http://localhost:8000/"
# Path to data file
DATA_PATH = "data/data.csv"
# Development settings
APPROVAL_PROCESSED_INPUT_SHAPE = (1, 39)
EXPLAIN_PROCESSED_INPUT_SHAPE = (1, 38)
CLIENT_TYPES = ["user", "bank", "third_party"]
INPUT_INDEXES = {
"user": 0,
"bank": 1,
"third_party": 2,
}
APPROVAL_INPUT_SLICES = {
"user": slice(0, 36), # First position: start from 0
"bank": slice(36, 37), # Second position: start from n_feature_user
"third_party": slice(37, 39), # Third position: start from n_feature_user + n_feature_bank
}
EXPLAIN_INPUT_SLICES = {
"user": slice(0, 36), # First position: start from 0
"bank": slice(36, 37), # Second position: start from n_feature_user
"third_party": slice(37, 38), # Third position: start from n_feature_user + n_feature_bank
}
# Fix column order for pre-processing steps
USER_COLUMNS = [
'Own_car', 'Own_property', 'Mobile_phone', 'Num_children', 'Household_size',
'Total_income', 'Age', 'Income_type', 'Education_type', 'Family_status', 'Housing_type',
'Occupation_type',
]
BANK_COLUMNS = ["Account_age"]
APPROVAL_THIRD_PARTY_COLUMNS = ["Years_employed", "Employed"]
EXPLAIN_THIRD_PARTY_COLUMNS = ["Employed"]
_data = pandas.read_csv(DATA_PATH, encoding="utf-8")
def get_min_max(data, column):
"""Get min/max values of a column in order to input them in Gradio's API as key arguments."""
return {
"minimum": int(data[column].min()),
"maximum": int(data[column].max()),
}
# App data min and max values
ACCOUNT_MIN_MAX = get_min_max(_data, "Account_age")
CHILDREN_MIN_MAX = get_min_max(_data, "Num_children")
INCOME_MIN_MAX = get_min_max(_data, "Total_income")
AGE_MIN_MAX = get_min_max(_data, "Age")
EMPLOYED_MIN_MAX = get_min_max(_data, "Years_employed")
FAMILY_MIN_MAX = get_min_max(_data, "Household_size")
# App data choices
INCOME_TYPES = list(_data["Income_type"].unique())
OCCUPATION_TYPES = list(_data["Occupation_type"].unique())
HOUSING_TYPES = list(_data["Housing_type"].unique())
EDUCATION_TYPES = list(_data["Education_type"].unique())
FAMILY_STATUS = list(_data["Family_status"].unique())
|