File size: 16,938 Bytes
9a997e4 b47829b 9a997e4 b47829b 8e0d56d 18ba8c1 8e0d56d 9a997e4 8e0d56d 18ba8c1 8e0d56d b47829b 9a997e4 b47829b 9a997e4 61cd73f 9a997e4 18ba8c1 8e0d56d 18ba8c1 8e0d56d 18ba8c1 8e0d56d 18ba8c1 8e0d56d 9a997e4 bf71bfa 9a997e4 04d1e2c 9a997e4 04d1e2c 9a997e4 04d1e2c bf71bfa 04d1e2c 9a997e4 b47829b bc345ce 9a997e4 bc345ce 9a997e4 b47829b 9a997e4 b47829b 9a997e4 bc345ce 9a997e4 8d5cb63 bc345ce 9a997e4 8e0d56d bc345ce bf71bfa 8e0d56d bf71bfa bc345ce bf71bfa 9a997e4 bc345ce 9a997e4 bc345ce 9a997e4 bc345ce 9a997e4 bc345ce 9a997e4 8d5cb63 bc345ce 9a997e4 8d5cb63 9a997e4 bc345ce 8d5cb63 9a997e4 bf71bfa 9a997e4 b47829b bc345ce 9a997e4 bf71bfa 9a997e4 8e0d56d 9a997e4 74c0c8e 9a997e4 bf71bfa 9a997e4 bc345ce 9a997e4 b47829b 9a997e4 8d5cb63 9a997e4 8d5cb63 9a997e4 999f0b2 9a997e4 8d5cb63 9a997e4 bc345ce 9a997e4 8e0d56d 9a997e4 b47829b 9a997e4 b47829b 9a997e4 993f2a6 9a997e4 18ba8c1 9a997e4 8e0d56d 9a997e4 18ba8c1 993f2a6 9a997e4 8e0d56d a241bb3 8e0d56d 9a997e4 8e0d56d 9a997e4 b47829b 9a997e4 b47829b 9a997e4 b47829b 9a997e4 31284a7 18ba8c1 9a997e4 18ba8c1 74c0c8e 8e0d56d 9a997e4 74c0c8e a241bb3 74c0c8e b47829b 8e0d56d b47829b 8e0d56d 9a997e4 8e0d56d 9a997e4 bc345ce 9a997e4 bf71bfa 9a997e4 bf71bfa 9a997e4 bc345ce 9a997e4 bf71bfa 9a997e4 1ad0c1c 9a997e4 bf71bfa 7ba6721 1ad0c1c 9a997e4 bf71bfa 9a997e4 bc345ce 9a997e4 999f0b2 9a997e4 1ad0c1c 9a997e4 7ba6721 1ad0c1c 9a997e4 1ad0c1c 9a997e4 1ad0c1c bf71bfa 1ad0c1c 61cd73f 1ad0c1c 9a997e4 1ad0c1c 74c0c8e b47829b 74c0c8e b47829b 74c0c8e 8e0d56d b47829b 74c0c8e b47829b 74c0c8e b47829b 61cd73f 8e0d56d b47829b 61cd73f b47829b 8e0d56d 74c0c8e b47829b 74c0c8e b47829b 74c0c8e 8e0d56d 61cd73f 74c0c8e 8e0d56d 61cd73f 74c0c8e 8e0d56d 61cd73f 74c0c8e 61cd73f 74c0c8e 61cd73f 74c0c8e 8e0d56d 74c0c8e 61cd73f 74c0c8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
"""Backend functions used in the app."""
import os
import shutil
import gradio as gr
import numpy
import requests
import pickle
import pandas
from itertools import chain
from settings import (
SERVER_URL,
FHE_KEYS,
CLIENT_FILES,
SERVER_FILES,
DEPLOYMENT_PATH,
PROCESSED_INPUT_SHAPE,
INPUT_INDEXES,
INPUT_SLICES,
PRE_PROCESSOR_APPLICANT_PATH,
PRE_PROCESSOR_BANK_PATH,
PRE_PROCESSOR_CREDIT_BUREAU_PATH,
CLIENT_TYPES,
APPLICANT_COLUMNS,
BANK_COLUMNS,
CREDIT_BUREAU_COLUMNS,
YEARS_EMPLOYED_BINS,
YEARS_EMPLOYED_BIN_NAME_TO_INDEX,
)
from utils.client_server_interface import MultiInputsFHEModelClient
# Define the messages associated to the predictions
APPROVED_MESSAGE = "Credit card is likely to be approved β
"
DENIED_MESSAGE = "Credit card is likely to be denied β"
# Load pre-processor instances
with (
PRE_PROCESSOR_APPLICANT_PATH.open('rb') as file_applicant,
PRE_PROCESSOR_BANK_PATH.open('rb') as file_bank,
PRE_PROCESSOR_CREDIT_BUREAU_PATH.open('rb') as file_credit_bureau,
):
PRE_PROCESSOR_APPLICANT = pickle.load(file_applicant)
PRE_PROCESSOR_BANK = pickle.load(file_bank)
PRE_PROCESSOR_CREDIT_BUREAU = pickle.load(file_credit_bureau)
def shorten_bytes_object(bytes_object, limit=500):
"""Shorten the input bytes object to a given length.
Encrypted data is too large for displaying it in the browser using Gradio. This function
provides a shorten representation of it.
Args:
bytes_object (bytes): The input to shorten
limit (int): The length to consider. Default to 500.
Returns:
str: Hexadecimal string shorten representation of the input byte object.
"""
# Define a shift for better display
shift = 100
return bytes_object[shift : limit + shift].hex()
def clean_temporary_files(n_keys=20):
"""Clean older keys and encrypted files.
A maximum of n_keys keys and associated temporary files are allowed to be stored. Once this
limit is reached, the oldest files are deleted.
Args:
n_keys (int): The maximum number of keys and associated files to be stored. Default to 20.
"""
# Get the oldest key files in the key directory
key_dirs = sorted(FHE_KEYS.iterdir(), key=os.path.getmtime)
# If more than n_keys keys are found, remove the oldest
client_ids = []
if len(key_dirs) > n_keys:
n_keys_to_delete = len(key_dirs) - n_keys
for key_dir in key_dirs[:n_keys_to_delete]:
client_ids.append(key_dir.name)
shutil.rmtree(key_dir)
# Delete all files related to the IDs whose keys were deleted
for directory in chain(CLIENT_FILES.iterdir(), SERVER_FILES.iterdir()):
for client_id in client_ids:
if client_id in directory.name:
shutil.rmtree(directory)
def _get_client(client_id):
"""Get the client instance.
Args:
client_id (int): The client ID to consider.
Returns:
FHEModelClient: The client instance.
"""
key_dir = FHE_KEYS / f"{client_id}"
return MultiInputsFHEModelClient(DEPLOYMENT_PATH, key_dir=key_dir, nb_inputs=len(CLIENT_TYPES))
def _get_client_file_path(name, client_id, client_type=None):
"""Get the file path for the client.
Args:
name (str): The desired file name (either 'evaluation_key', 'encrypted_inputs' or
'encrypted_outputs').
client_id (int): The client ID to consider.
client_type (Optional[str]): The type of client to consider (either 'applicant', 'bank',
'credit_bureau' or None). Default to None, which is used for evaluation key and output.
Returns:
pathlib.Path: The file path.
"""
client_type_suffix = ""
if client_type is not None:
client_type_suffix = f"_{client_type}"
dir_path = CLIENT_FILES / f"{client_id}"
dir_path.mkdir(exist_ok=True)
return dir_path / f"{name}{client_type_suffix}"
def _send_to_server(client_id, client_type, file_name):
"""Send the encrypted inputs or the evaluation key to the server.
Args:
client_id (int): The client ID to consider.
client_type (Optional[str]): The type of client to consider (either 'applicant', 'bank',
'credit_bureau' or None).
file_name (str): File name to send (either 'evaluation_key' or 'encrypted_inputs').
"""
# Get the paths to the encrypted inputs
encrypted_file_path = _get_client_file_path(file_name, client_id, client_type)
# Define the data and files to post
data = {
"client_id": client_id,
"client_type": client_type,
"file_name": file_name,
}
files = [
("files", open(encrypted_file_path, "rb")),
]
# Send the encrypted inputs or evaluation key to the server
url = SERVER_URL + "send_file"
with requests.post(
url=url,
data=data,
files=files,
) as response:
return response.ok
def keygen_send():
"""Generate the private and evaluation key, and send the evaluation key to the server.
Returns:
client_id (str): The current client ID to consider.
"""
# Clean temporary files
clean_temporary_files()
# Create an ID for the current client to consider
client_id = numpy.random.randint(0, 2**32)
# Retrieve the client instance
client = _get_client(client_id)
# Generate the private and evaluation keys
client.generate_private_and_evaluation_keys(force=True)
# Retrieve the serialized evaluation key
evaluation_key = client.get_serialized_evaluation_keys()
file_name = "evaluation_key"
# Save evaluation key as bytes in a file as it is too large to pass through regular Gradio
# buttons (see https://github.com/gradio-app/gradio/issues/1877)
evaluation_key_path = _get_client_file_path(file_name, client_id)
with evaluation_key_path.open("wb") as evaluation_key_file:
evaluation_key_file.write(evaluation_key)
# Send the evaluation key to the server
_send_to_server(client_id, None, file_name)
# Create a truncated version of the evaluation key for display
evaluation_key_short = shorten_bytes_object(evaluation_key)
return client_id, evaluation_key_short, gr.update(value="Keys are generated and evaluation key is sent β
")
def _encrypt_send(client_id, inputs, client_type):
"""Encrypt the given inputs for a specific client and send it to the server.
Args:
client_id (str): The current client ID to consider.
inputs (numpy.ndarray): The inputs to encrypt.
client_type (str): The type of client to consider (either 'applicant', 'bank' or
'credit_bureau').
Returns:
encrypted_inputs_short (str): A short representation of the encrypted input to send in hex.
"""
if client_id == "":
raise gr.Error("Please generate the keys first.")
# Retrieve the client instance
client = _get_client(client_id)
# Quantize, encrypt and serialize the inputs
encrypted_inputs = client.quantize_encrypt_serialize_multi_inputs(
inputs,
input_index=INPUT_INDEXES[client_type],
processed_input_shape=PROCESSED_INPUT_SHAPE,
input_slice=INPUT_SLICES[client_type],
)
file_name = "encrypted_inputs"
# Save encrypted_inputs to bytes in a file, since too large to pass through regular Gradio
# buttons, https://github.com/gradio-app/gradio/issues/1877
encrypted_inputs_path = _get_client_file_path(file_name, client_id, client_type)
with encrypted_inputs_path.open("wb") as encrypted_inputs_file:
encrypted_inputs_file.write(encrypted_inputs)
# Create a truncated version of the encrypted inputs for display
encrypted_inputs_short = shorten_bytes_object(encrypted_inputs)
_send_to_server(client_id, client_type, file_name)
return encrypted_inputs_short
def pre_process_encrypt_send_applicant(client_id, *inputs):
"""Pre-process, encrypt and send the applicant inputs for a specific client to the server.
Args:
client_id (str): The current client ID to consider.
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(str): A short representation of the encrypted input to send in hex.
"""
bool_inputs, num_children, household_size, total_income, age, income_type, education_type, \
family_status, occupation_type, housing_type = inputs
# Retrieve boolean values
own_car = "Car" in bool_inputs
own_property = "Property" in bool_inputs
mobile_phone = "Mobile phone" in bool_inputs
applicant_inputs = pandas.DataFrame({
"Own_car": [own_car],
"Own_property": [own_property],
"Mobile_phone": [mobile_phone],
"Num_children": [num_children],
"Household_size": [household_size],
"Total_income": [total_income],
"Age": [age],
"Income_type": [income_type],
"Education_type": [education_type],
"Family_status": [family_status],
"Occupation_type": [occupation_type],
"Housing_type": [housing_type],
})
applicant_inputs = applicant_inputs.reindex(APPLICANT_COLUMNS, axis=1)
preprocessed_applicant_inputs = PRE_PROCESSOR_APPLICANT.transform(applicant_inputs)
return _encrypt_send(client_id, preprocessed_applicant_inputs, "applicant")
def pre_process_encrypt_send_bank(client_id, *inputs):
"""Pre-process, encrypt and send the bank inputs for a specific client to the server.
Args:
client_id (str): The current client ID to consider.
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(str): A short representation of the encrypted input to send in hex.
"""
account_age = inputs[0]
bank_inputs = pandas.DataFrame({
"Account_age": [account_age],
})
bank_inputs = bank_inputs.reindex(BANK_COLUMNS, axis=1)
preprocessed_bank_inputs = PRE_PROCESSOR_BANK.transform(bank_inputs)
return _encrypt_send(client_id, preprocessed_bank_inputs, "bank")
def pre_process_encrypt_send_credit_bureau(client_id, *inputs):
"""Pre-process, encrypt and send the credit bureau inputs for a specific client to the server.
Args:
client_id (str): The current client ID to consider.
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(str): A short representation of the encrypted input to send in hex.
"""
years_employed_bin, employed = inputs
years_employed = YEARS_EMPLOYED_BIN_NAME_TO_INDEX[years_employed_bin]
is_employed = employed == "Yes"
credit_bureau_inputs = pandas.DataFrame({
"Years_employed": [years_employed],
"Employed": [is_employed],
})
credit_bureau_inputs = credit_bureau_inputs.reindex(CREDIT_BUREAU_COLUMNS, axis=1)
preprocessed_credit_bureau_inputs = PRE_PROCESSOR_CREDIT_BUREAU.transform(credit_bureau_inputs)
return _encrypt_send(client_id, preprocessed_credit_bureau_inputs, "credit_bureau")
def run_fhe(client_id):
"""Run the model on the encrypted inputs previously sent using FHE.
Args:
client_id (str): The current client ID to consider.
"""
if client_id == "":
raise gr.Error("Please generate the keys first.")
data = {
"client_id": client_id,
}
# Trigger the FHE execution on the encrypted inputs previously sent
url = SERVER_URL + "run_fhe"
with requests.post(
url=url,
data=data,
) as response:
if response.ok:
return response.json()
else:
raise gr.Error("Please send the inputs from all three parties to the server first.")
def get_output_and_decrypt(client_id):
"""Retrieve the encrypted output.
Args:
client_id (str): The current client ID to consider.
Returns:
(Tuple[str, bytes]): The output message based on the decrypted prediction as well as
a byte short representation of the encrypted output.
"""
if client_id == "":
raise gr.Error("Please generate the keys first.")
data = {
"client_id": client_id,
}
# Retrieve the encrypted output
url = SERVER_URL + "get_output"
with requests.post(
url=url,
data=data,
) as response:
if response.ok:
encrypted_output_proba = response.content
# Create a truncated version of the encrypted inputs for display
encrypted_output_short = shorten_bytes_object(encrypted_output_proba)
# Retrieve the client API
client = _get_client(client_id)
# Deserialize, decrypt and post-process the encrypted output
output_proba = client.deserialize_decrypt_dequantize(encrypted_output_proba)
# Determine the predicted class
output = numpy.argmax(output_proba, axis=1).squeeze()
return (
APPROVED_MESSAGE if output == 1 else DENIED_MESSAGE,
encrypted_output_short,
)
else:
raise gr.Error("Please run the FHE execution first and wait for it to be completed.")
def explain_encrypt_run_decrypt(client_id, prediction_output, *inputs):
"""Pre-process and encrypt the inputs, run the prediction in FHE and decrypt the output.
Args:
client_id (str): The current client ID to consider.
prediction_output (str): The initial prediction output. This parameter is only used to
throw an error in case the prediction was positive.
*inputs (Tuple[numpy.ndarray]): The inputs to consider.
Returns:
(str): A message indicating the number of additional years of employment that could be
required in order to increase the chance of credit card approval.
"""
if "approved" in prediction_output:
raise gr.Error(
"Explaining the prediction can only be done if the credit card is likely to be denied."
)
# Retrieve the credit bureau inputs
years_employed, employed = inputs
# Years_employed is divided into several ordered bins. Here, we retrieve the index representing
# the bin from the input
bin_index = YEARS_EMPLOYED_BIN_NAME_TO_INDEX[years_employed]
# If the bin is not the last (representing the most years of employment), we run the model in
# FHE for each bins "older" or equal to the given bin, in order. Then, we retrieve the first
# bin that changes the model's prediction to "approval" and display it to the applicant.
if bin_index != len(YEARS_EMPLOYED_BINS) - 1:
# Loop over the bins starting with "older" or equal to the given bin
for years_employed_bin in YEARS_EMPLOYED_BINS[bin_index:]:
# Send the new encrypted input
pre_process_encrypt_send_credit_bureau(client_id, years_employed_bin, employed)
# Run the model in FHE
run_fhe(client_id)
# Retrieve the new prediction
output_prediction = get_output_and_decrypt(client_id)
# If the bin made the model predict an approval, share it to the applicant
if "approved" in output_prediction[0]:
# If the approval was made using the given input, that means the applicant most
# likely tried the bin suggested in a previous explainability run. In that case, we
# confirm that the credit card is likely to be approved
if years_employed_bin == years_employed:
return APPROVED_MESSAGE
# Else, that means the applicant is looking for some explainability. We therefore
# suggest to try the obtained bin
return (
DENIED_MESSAGE + f" However, having at least {years_employed_bin} years of "
"employment would increase your chance of having your credit card approved."
)
# In case no bins made the model predict an approval, explain why
return (
DENIED_MESSAGE + " Unfortunately, increasing the number of years of employment up to "
f"{YEARS_EMPLOYED_BINS[-1]} years does not seem to be enough to get an approval based "
"on the given inputs. Other inputs like the income or the account's age might have "
"bigger impact in this particular case."
)
# In case the applicant tried the "oldest" bin (but still got denied), explain why
return (
DENIED_MESSAGE + " Unfortunately, you already have the maximum amount of years of "
f"employment ({years_employed} years). Other inputs like the income or the account's age "
"might have a bigger impact in this particular case."
)
|