File size: 5,120 Bytes
9a997e4
 
 
 
 
 
 
a241bb3
74c0c8e
 
a241bb3
74c0c8e
 
a241bb3
18ba8c1
a241bb3
 
 
74c0c8e
 
a241bb3
9a997e4
74c0c8e
a241bb3
9a997e4
 
74c0c8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a997e4
74c0c8e
 
 
9a997e4
 
74c0c8e
9a997e4
 
18ba8c1
9a997e4
 
 
 
18ba8c1
9a997e4
 
a241bb3
 
74c0c8e
9a997e4
 
18ba8c1
9a997e4
 
18ba8c1
9a997e4
 
 
 
 
 
 
74c0c8e
9a997e4
74c0c8e
9a997e4
74c0c8e
9a997e4
74c0c8e
9a997e4
b0303a0
 
9a997e4
74c0c8e
 
9a997e4
ec21179
74c0c8e
 
9a997e4
 
18ba8c1
 
 
 
 
 
 
 
9a997e4
74c0c8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a997e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""Train and compile the model."""

import shutil
import numpy
import pandas
import pickle

from settings import (
    APPROVAL_DEPLOYMENT_PATH,
    EXPLAIN_DEPLOYMENT_PATH,
    DATA_PATH, 
    APPROVAL_INPUT_SLICES, 
    EXPLAIN_INPUT_SLICES,
    PRE_PROCESSOR_USER_PATH, 
    PRE_PROCESSOR_BANK_PATH,
    PRE_PROCESSOR_THIRD_PARTY_PATH,
    USER_COLUMNS,
    BANK_COLUMNS,
    APPROVAL_THIRD_PARTY_COLUMNS,
    EXPLAIN_THIRD_PARTY_COLUMNS,
)
from utils.client_server_interface import MultiInputsFHEModelDev
from utils.model import MultiInputDecisionTreeClassifier, MultiInputDecisionTreeRegressor
from utils.pre_processing import get_pre_processors


def get_multi_inputs(data, is_approval):
    """Get inputs for all three parties from the input data, using fixed slices.
    
    Args:
        data (numpy.ndarray): The input data to consider.
        is_approval (bool): If the data should be used for the 'approval' model (else, otherwise for 
            the 'explain' model).
    
    Returns:
        (Tuple[numpy.ndarray]): The inputs for all three parties.
    """
    if is_approval:
        return (
            data[:, APPROVAL_INPUT_SLICES["user"]], 
            data[:, APPROVAL_INPUT_SLICES["bank"]], 
            data[:, APPROVAL_INPUT_SLICES["third_party"]]
        )
    
    return (
        data[:, EXPLAIN_INPUT_SLICES["user"]], 
        data[:, EXPLAIN_INPUT_SLICES["bank"]], 
        data[:, EXPLAIN_INPUT_SLICES["third_party"]]
    )


print("Load and pre-process the data")

# Load the data
data = pandas.read_csv(DATA_PATH, encoding="utf-8")

# Define input and target data
data_x = data.copy()
data_y = data_x.pop("Target").copy().to_frame()

# Get data from all parties
data_user = data_x[USER_COLUMNS].copy()
data_bank = data_x[BANK_COLUMNS].copy()
data_third_party = data_x[APPROVAL_THIRD_PARTY_COLUMNS].copy()

# Feature engineer the data
pre_processor_user, pre_processor_bank, pre_processor_third_party = get_pre_processors()

preprocessed_data_user = pre_processor_user.fit_transform(data_user)
preprocessed_data_bank = pre_processor_bank.fit_transform(data_bank)
preprocessed_data_third_party = pre_processor_third_party.fit_transform(data_third_party)

preprocessed_data_x = numpy.concatenate((preprocessed_data_user, preprocessed_data_bank, preprocessed_data_third_party), axis=1)


print("\nTrain and compile the model")

model_approval = MultiInputDecisionTreeClassifier()

model_approval, sklearn_model_approval = model_approval.fit_benchmark(preprocessed_data_x, data_y)
 
multi_inputs_train = get_multi_inputs(preprocessed_data_x, is_approval=True)

model_approval.compile(*multi_inputs_train, inputs_encryption_status=["encrypted", "encrypted", "encrypted"])

print("\nSave deployment files")

# Delete the deployment folder and its content if it already exists
if APPROVAL_DEPLOYMENT_PATH.is_dir():
    shutil.rmtree(APPROVAL_DEPLOYMENT_PATH)

# Save files needed for deployment (and enable cross-platform deployment)
fhe_model_dev_approval = MultiInputsFHEModelDev(APPROVAL_DEPLOYMENT_PATH, model_approval)
fhe_model_dev_approval.save(via_mlir=True)

# Save pre-processors
with (
    PRE_PROCESSOR_USER_PATH.open('wb') as file_user, 
    PRE_PROCESSOR_BANK_PATH.open('wb') as file_bank,
    PRE_PROCESSOR_THIRD_PARTY_PATH.open('wb') as file_third_party,
):
    pickle.dump(pre_processor_user, file_user)
    pickle.dump(pre_processor_bank, file_bank)
    pickle.dump(pre_processor_third_party, file_third_party)


print("\nLoad, train, compile and save files for the 'explain' model")

# Define input and target data
data_x = data.copy()
data_y = data_x.pop("Years_employed").copy().to_frame()
target_values = data_x.pop("Target").copy()

# Get all data points whose target value is True (credit card has been approved)
approved_mask = target_values == 1
data_x_approved = data_x[approved_mask]
data_y_approved = data_y[approved_mask]

# Get data from all parties
data_user = data_x_approved[USER_COLUMNS].copy()
data_bank = data_x_approved[BANK_COLUMNS].copy()
data_third_party = data_x_approved[EXPLAIN_THIRD_PARTY_COLUMNS].copy()

preprocessed_data_user = pre_processor_user.transform(data_user)
preprocessed_data_bank = pre_processor_bank.transform(data_bank)
preprocessed_data_third_party = data_third_party.to_numpy() 

preprocessed_data_x = numpy.concatenate((preprocessed_data_user, preprocessed_data_bank, preprocessed_data_third_party), axis=1)

model_explain = MultiInputDecisionTreeRegressor()

model_explain, sklearn_model_explain = model_explain.fit_benchmark(preprocessed_data_x, data_y_approved)

multi_inputs_train = get_multi_inputs(preprocessed_data_x, is_approval=False)

model_explain.compile(*multi_inputs_train, inputs_encryption_status=["encrypted", "encrypted", "encrypted"])

# Delete the deployment folder and its content if it already exists
if EXPLAIN_DEPLOYMENT_PATH.is_dir():
    shutil.rmtree(EXPLAIN_DEPLOYMENT_PATH)

# Save files needed for deployment (and enable cross-platform deployment)
fhe_model_dev_explain = MultiInputsFHEModelDev(EXPLAIN_DEPLOYMENT_PATH, model_explain)
fhe_model_dev_explain.save(via_mlir=True)

print("\nDone !")