File size: 16,481 Bytes
9a997e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47829b
 
9a997e4
b47829b
9a997e4
18ba8c1
316f8e9
9a997e4
a241bb3
18ba8c1
316f8e9
b47829b
 
9a997e4
 
b47829b
9a997e4
 
18ba8c1
 
 
316f8e9
18ba8c1
 
 
316f8e9
9a997e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf71bfa
9a997e4
 
 
 
 
 
 
 
 
 
 
 
04d1e2c
9a997e4
 
 
04d1e2c
9a997e4
04d1e2c
bf71bfa
04d1e2c
 
 
 
9a997e4
 
b47829b
bc345ce
9a997e4
 
 
 
 
bc345ce
9a997e4
b47829b
9a997e4
b47829b
9a997e4
 
bc345ce
 
9a997e4
 
8d5cb63
bc345ce
9a997e4
bc345ce
316f8e9
bc345ce
 
 
 
 
 
 
 
 
 
 
 
 
 
bf71bfa
 
 
 
 
18ba8c1
316f8e9
bf71bfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc345ce
 
 
 
bf71bfa
9a997e4
 
 
 
bc345ce
 
 
9a997e4
bc345ce
9a997e4
bc345ce
9a997e4
 
bc345ce
9a997e4
 
8d5cb63
 
bc345ce
9a997e4
8d5cb63
9a997e4
 
 
 
bc345ce
8d5cb63
9a997e4
bf71bfa
 
 
 
9a997e4
 
b47829b
bc345ce
9a997e4
 
bf71bfa
9a997e4
316f8e9
9a997e4
 
74c0c8e
9a997e4
bf71bfa
 
9a997e4
 
bc345ce
9a997e4
 
 
 
 
b47829b
 
9a997e4
 
8d5cb63
 
9a997e4
 
8d5cb63
9a997e4
 
 
 
999f0b2
9a997e4
 
8d5cb63
9a997e4
bc345ce
9a997e4
 
b47829b
 
9a997e4
 
b47829b
9a997e4
 
 
b47829b
9a997e4
993f2a6
9a997e4
 
 
 
 
18ba8c1
9a997e4
 
 
 
18ba8c1
993f2a6
 
 
 
 
 
 
 
 
9a997e4
 
a241bb3
 
9a997e4
 
bc345ce
9a997e4
 
b47829b
 
9a997e4
 
b47829b
9a997e4
 
 
b47829b
9a997e4
31284a7
18ba8c1
 
 
 
 
 
 
 
9a997e4
18ba8c1
74c0c8e
 
316f8e9
 
9a997e4
74c0c8e
 
 
a241bb3
74c0c8e
 
 
b47829b
 
 
 
 
316f8e9
b47829b
 
 
 
316f8e9
 
9a997e4
316f8e9
9a997e4
 
bc345ce
9a997e4
 
 
bf71bfa
9a997e4
 
bf71bfa
 
9a997e4
 
bc345ce
9a997e4
 
 
 
 
 
 
 
 
 
 
bf71bfa
9a997e4
 
1ad0c1c
9a997e4
 
 
bf71bfa
7ba6721
 
1ad0c1c
 
9a997e4
bf71bfa
 
 
 
9a997e4
bc345ce
9a997e4
 
999f0b2
9a997e4
 
 
 
 
 
1ad0c1c
9a997e4
7ba6721
1ad0c1c
9a997e4
1ad0c1c
 
9a997e4
1ad0c1c
 
bf71bfa
1ad0c1c
 
 
 
 
 
 
 
9a997e4
1ad0c1c
 
74c0c8e
 
b47829b
74c0c8e
 
 
 
 
 
 
 
 
 
b47829b
74c0c8e
 
 
 
 
 
 
316f8e9
b47829b
74c0c8e
b47829b
 
 
74c0c8e
b47829b
 
 
 
74c0c8e
b47829b
 
 
 
 
 
316f8e9
74c0c8e
b47829b
 
74c0c8e
b47829b
 
74c0c8e
b47829b
 
 
316f8e9
b47829b
316f8e9
b47829b
 
 
74c0c8e
b47829b
 
 
74c0c8e
b47829b
 
 
 
74c0c8e
 
b47829b
 
 
74c0c8e
 
 
b47829b
 
 
74c0c8e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
"""Backend functions used in the app."""

import os
import shutil
import gradio as gr
import numpy
import requests
import pickle
import pandas
from itertools import chain

from settings import (
    SERVER_URL,
    FHE_KEYS,
    CLIENT_FILES,
    SERVER_FILES,
    DEPLOYMENT_PATH,
    PROCESSED_INPUT_SHAPE,
    INPUT_INDEXES,
    INPUT_SLICES,
    PRE_PROCESSOR_USER_PATH, 
    PRE_PROCESSOR_BANK_PATH,
    PRE_PROCESSOR_CS_AGENCY_PATH,
    CLIENT_TYPES,
    USER_COLUMNS,
    BANK_COLUMNS,
    CS_AGENCY_COLUMNS,
    YEARS_EMPLOYED_BINS,
    YEARS_EMPLOYED_BIN_NAME_TO_INDEX,
)

from utils.client_server_interface import MultiInputsFHEModelClient

# Load pre-processor instances
with (
    PRE_PROCESSOR_USER_PATH.open('rb') as file_user, 
    PRE_PROCESSOR_BANK_PATH.open('rb') as file_bank,
    PRE_PROCESSOR_CS_AGENCY_PATH.open('rb') as file_cs_agency,
):
    PRE_PROCESSOR_USER = pickle.load(file_user)
    PRE_PROCESSOR_BANK = pickle.load(file_bank)
    PRE_PROCESSOR_CS_AGENCY = pickle.load(file_cs_agency)


def shorten_bytes_object(bytes_object, limit=500):
    """Shorten the input bytes object to a given length.

    Encrypted data is too large for displaying it in the browser using Gradio. This function
    provides a shorten representation of it.

    Args:
        bytes_object (bytes): The input to shorten
        limit (int): The length to consider. Default to 500.

    Returns:
        str: Hexadecimal string shorten representation of the input byte object. 

    """
    # Define a shift for better display
    shift = 100
    return bytes_object[shift : limit + shift].hex()


def clean_temporary_files(n_keys=20):
    """Clean older keys and encrypted files.

    A maximum of n_keys keys and associated temporary files are allowed to be stored. Once this 
    limit is reached, the oldest files are deleted.

    Args:
        n_keys (int): The maximum number of keys and associated files to be stored. Default to 20.

    """
    # Get the oldest key files in the key directory
    key_dirs = sorted(FHE_KEYS.iterdir(), key=os.path.getmtime)

    # If more than n_keys keys are found, remove the oldest
    client_ids = []
    if len(key_dirs) > n_keys:
        n_keys_to_delete = len(key_dirs) - n_keys
        for key_dir in key_dirs[:n_keys_to_delete]:
            client_ids.append(key_dir.name)
            shutil.rmtree(key_dir)
    
    # Delete all files related to the IDs whose keys were deleted
    for directory in chain(CLIENT_FILES.iterdir(), SERVER_FILES.iterdir()):
        for client_id in client_ids:
            if client_id in directory.name:
                shutil.rmtree(directory)


def _get_client(client_id):
    """Get the client instance.

    Args:
        client_id (int): The client ID to consider.

    Returns:
        FHEModelClient: The client instance.
    """
    key_dir = FHE_KEYS / f"{client_id}"

    return MultiInputsFHEModelClient(DEPLOYMENT_PATH, key_dir=key_dir, nb_inputs=len(CLIENT_TYPES))


def _get_client_file_path(name, client_id, client_type=None):
    """Get the file path for the client.

    Args:
        name (str): The desired file name (either 'evaluation_key', 'encrypted_inputs' or 
            'encrypted_outputs').
        client_id (int): The client ID to consider.
        client_type (Optional[str]): The type of user to consider (either 'user', 'bank', 
            'cs_agency' or None). Default to None, which is used for evaluation key and output.

    Returns:
        pathlib.Path: The file path.
    """
    client_type_suffix = "" 
    if client_type is not None:
        client_type_suffix = f"_{client_type}"

    dir_path = CLIENT_FILES / f"{client_id}"
    dir_path.mkdir(exist_ok=True)

    return dir_path / f"{name}{client_type_suffix}"


def _send_to_server(client_id, client_type, file_name):
    """Send the encrypted inputs or the evaluation key to the server.

    Args:
        client_id (int): The client ID to consider.
        client_type (Optional[str]): The type of client to consider (either 'user', 'bank', 
            'cs_agency' or None).
        file_name (str): File name to send (either 'evaluation_key' or 'encrypted_inputs').
    """
    # Get the paths to the encrypted inputs
    encrypted_file_path = _get_client_file_path(file_name, client_id, client_type)

    # Define the data and files to post
    data = {
        "client_id": client_id,
        "client_type": client_type,
        "file_name": file_name,
    }

    files = [
        ("files", open(encrypted_file_path, "rb")),
    ]

    # Send the encrypted inputs or evaluation key to the server
    url = SERVER_URL + "send_file"
    with requests.post(
        url=url,
        data=data,
        files=files,
    ) as response:
        return response.ok


def keygen_send():
    """Generate the private and evaluation key, and send the evaluation key to the server.
    
    Returns:
        client_id (str): The current client ID to consider.
    """
    # Clean temporary files
    clean_temporary_files()

    # Create an ID for the current client to consider
    client_id = numpy.random.randint(0, 2**32)

    # Retrieve the client instance
    client = _get_client(client_id)

    # Generate the private and evaluation keys
    client.generate_private_and_evaluation_keys(force=True)

    # Retrieve the serialized evaluation key
    evaluation_key = client.get_serialized_evaluation_keys()

    file_name = "evaluation_key"

    # Save evaluation key as bytes in a file as it is too large to pass through regular Gradio
    # buttons (see https://github.com/gradio-app/gradio/issues/1877)
    evaluation_key_path = _get_client_file_path(file_name, client_id)

    with evaluation_key_path.open("wb") as evaluation_key_file:
        evaluation_key_file.write(evaluation_key)

    # Send the evaluation key to the server
    _send_to_server(client_id, None, file_name)

    # Create a truncated version of the evaluation key for display
    evaluation_key_short = shorten_bytes_object(evaluation_key)
    
    return client_id, evaluation_key_short, gr.update(value="Keys are generated and evaluation key is sent βœ…")


def _encrypt_send(client_id, inputs, client_type):
    """Encrypt the given inputs for a specific client and send it to the server.

    Args:
        client_id (str): The current client ID to consider.
        inputs (numpy.ndarray): The inputs to encrypt.
        client_type (str): The type of client to consider (either 'user', 'bank' or 'cs_agency').
    
    Returns:
        encrypted_inputs_short (str): A short representation of the encrypted input to send in hex. 
    """
    if client_id == "":
        raise gr.Error("Please generate the keys first.")

    # Retrieve the client instance
    client = _get_client(client_id)

    # Quantize, encrypt and serialize the inputs
    encrypted_inputs = client.quantize_encrypt_serialize_multi_inputs(
        inputs, 
        input_index=INPUT_INDEXES[client_type], 
        processed_input_shape=PROCESSED_INPUT_SHAPE, 
        input_slice=INPUT_SLICES[client_type],
    )

    file_name = "encrypted_inputs"

    # Save encrypted_inputs to bytes in a file, since too large to pass through regular Gradio
    # buttons, https://github.com/gradio-app/gradio/issues/1877
    encrypted_inputs_path = _get_client_file_path(file_name, client_id, client_type)

    with encrypted_inputs_path.open("wb") as encrypted_inputs_file:
        encrypted_inputs_file.write(encrypted_inputs)

    # Create a truncated version of the encrypted inputs for display
    encrypted_inputs_short = shorten_bytes_object(encrypted_inputs)

    _send_to_server(client_id, client_type, file_name)

    return encrypted_inputs_short


def pre_process_encrypt_send_user(client_id, *inputs):
    """Pre-process, encrypt and send the user inputs for a specific client to the server.

    Args:
        client_id (str): The current client ID to consider.
        *inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
    
    Returns:
        (str): A short representation of the encrypted input to send in hex. 
    """
    bool_inputs, num_children, household_size, total_income, age, income_type, education_type, \
        family_status, occupation_type, housing_type = inputs

    # Retrieve boolean values
    own_car = "Car" in bool_inputs
    own_property = "Property" in bool_inputs
    mobile_phone = "Mobile phone" in bool_inputs

    user_inputs = pandas.DataFrame({
        "Own_car": [own_car],
        "Own_property": [own_property],
        "Mobile_phone": [mobile_phone],
        "Num_children": [num_children],
        "Household_size": [household_size],
        "Total_income": [total_income],
        "Age": [age],
        "Income_type": [income_type],
        "Education_type": [education_type],
        "Family_status": [family_status],
        "Occupation_type": [occupation_type],
        "Housing_type": [housing_type],
    })

    user_inputs = user_inputs.reindex(USER_COLUMNS, axis=1)

    preprocessed_user_inputs = PRE_PROCESSOR_USER.transform(user_inputs)

    return _encrypt_send(client_id, preprocessed_user_inputs, "user")


def pre_process_encrypt_send_bank(client_id, *inputs):
    """Pre-process, encrypt and send the bank inputs for a specific client to the server.

    Args:        
        client_id (str): The current client ID to consider.
        *inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
    
    Returns:
        (str): A short representation of the encrypted input to send in hex. 
    """
    account_age = inputs[0]

    bank_inputs = pandas.DataFrame({
        "Account_age": [account_age],
    })

    bank_inputs = bank_inputs.reindex(BANK_COLUMNS, axis=1)

    preprocessed_bank_inputs = PRE_PROCESSOR_BANK.transform(bank_inputs)
    
    return _encrypt_send(client_id, preprocessed_bank_inputs, "bank")


def pre_process_encrypt_send_cs_agency(client_id, *inputs):
    """Pre-process, encrypt and send the credit scoring agency inputs for a specific client to the server.

    Args:
        client_id (str): The current client ID to consider.
        *inputs (Tuple[numpy.ndarray]): The inputs to pre-process.

    Returns:
        (str): A short representation of the encrypted input to send in hex. 
    """
    years_employed_bin, employed = inputs

    years_employed = YEARS_EMPLOYED_BIN_NAME_TO_INDEX[years_employed_bin]
    is_employed = employed == "Yes"

    cs_agency_inputs = pandas.DataFrame({
        "Years_employed": [years_employed],
        "Employed": [is_employed],
    })

    cs_agency_inputs = cs_agency_inputs.reindex(CS_AGENCY_COLUMNS, axis=1)
    preprocessed_cs_agency_inputs = PRE_PROCESSOR_CS_AGENCY.transform(cs_agency_inputs)

    return _encrypt_send(client_id, preprocessed_cs_agency_inputs, "cs_agency")


def run_fhe(client_id):
    """Run the model on the encrypted inputs previously sent using FHE.

    Args:
        client_id (str): The current client ID to consider.
    """

    if client_id == "":
        raise gr.Error("Please generate the keys first.")

    data = {
        "client_id": client_id,
    }

    # Trigger the FHE execution on the encrypted inputs previously sent
    url = SERVER_URL + "run_fhe"
    with requests.post(
        url=url,
        data=data,
    ) as response:
        if response.ok:
            return response.json()
        else:
            raise gr.Error("Please send the inputs from all three parties to the server first.")


def get_output_and_decrypt(client_id):
    """Retrieve the encrypted output.

    Args:
        client_id (str): The current client ID to consider.
    
    Returns:
        (Tuple[str, bytes]): The output message based on the decrypted prediction as well as 
            a byte short representation of the encrypted output. 
    """

    if client_id == "":
        raise gr.Error("Please generate the keys first.")

    data = {
        "client_id": client_id,
    }

    # Retrieve the encrypted output
    url = SERVER_URL + "get_output"
    with requests.post(
        url=url,
        data=data,
    ) as response:
        if response.ok:
            encrypted_output_proba = response.content
            
            # Create a truncated version of the encrypted inputs for display
            encrypted_output_short = shorten_bytes_object(encrypted_output_proba)

            # Retrieve the client API
            client = _get_client(client_id)

            # Deserialize, decrypt and post-process the encrypted output
            output_proba = client.deserialize_decrypt_dequantize(encrypted_output_proba)

            # Determine the predicted class
            output = numpy.argmax(output_proba, axis=1).squeeze()
            
            return (
                "Credit card is likely to be approved βœ…" if output == 1 
                else "Credit card is likely to be denied ❌",
                encrypted_output_short,
            )

        else:
            raise gr.Error("Please run the FHE execution first and wait for it to be completed.")


def explain_encrypt_run_decrypt(client_id, prediction_output, *inputs):
    """Pre-process and encrypt the inputs, run the prediction in FHE and decrypt the output. 

    Args:
        client_id (str): The current client ID to consider.
        prediction_output (str): The initial prediction output. This parameter is only used to 
            throw an error in case the prediction was positive. 
        *inputs (Tuple[numpy.ndarray]): The inputs to consider.
    
    Returns:
        (str): A message indicating the number of additional years of employment that could be 
            required in order to increase the chance of credit card approval.
    """

    if "approved" in prediction_output:
        raise gr.Error(
            "Explaining the prediction can only be done if the credit card is likely to be denied."
        )

    # Retrieve the credit scoring agency inputs
    years_employed, employed = inputs

    # Years_employed is divided into several ordered bins. Here, we retrieve the index representing 
    # the bin from the input
    bin_index = YEARS_EMPLOYED_BIN_NAME_TO_INDEX[years_employed]

    # If the bin is not the last (representing the most years of employment), we run the model in 
    # FHE for each bins "older" than the given bin, in order. Then, we retrieve the first bin that
    # changes the model's prediction to "approval" and display it to the user.  
    if bin_index != len(YEARS_EMPLOYED_BINS) - 1:

        output_predictions = []
        
        # Loop over the bins "older" than the input one
        for years_employed_bin in YEARS_EMPLOYED_BINS[bin_index+1:]:
            
            # Send the new encrypted input
            pre_process_encrypt_send_cs_agency(client_id, years_employed_bin, employed)

            # Run the model in FHE
            run_fhe(client_id)

            # Retrieve the new prediction
            output_prediction = get_output_and_decrypt(client_id)

            is_approved = "approved" in output_prediction[0]
            output_predictions.append(is_approved)
        
        # Re-send the initial credit scoring agency inputs in order to avoid unwanted conflict (as sending
        # some inputs basically re-writes the associated file on the server side)
        pre_process_encrypt_send_cs_agency(client_id, years_employed, employed)
        
        # In case the model predicted at least one approval
        if any(output_predictions):

            # Retrieve the first bin that made the model predict an approval 
            first_approved_prediction_index = numpy.argmax(output_predictions)
            years_employed_bin_needed = YEARS_EMPLOYED_BINS[first_approved_prediction_index + bin_index + 1]

            return (
                f"Having at least {years_employed_bin_needed} more years of employment would "
                "increase your chance of having your credit card approved."
            )

        return (
            f"Increasing the number of years of employment up to {YEARS_EMPLOYED_BINS[-1]} years "
            "does not seem to be enough to get an approval based on the given inputs. Other inputs "
            "like the income or the account's age might have bigger impact in this particular case."
        )

    return (
        f"You already have the maximum amount of years of employment ({years_employed} years). "
        "Other inputs like the income or the account's age might have bigger impact in this "
        "particular case."
    )