File size: 7,835 Bytes
9a997e4
1ba3f22
 
 
 
 
 
 
9a997e4
 
 
 
8d5cb63
9a997e4
 
 
 
 
 
 
 
bc345ce
 
 
 
9a997e4
 
 
1ba3f22
 
 
 
 
 
 
 
 
 
 
 
 
 
8d5cb63
1ba3f22
 
 
 
 
bc345ce
 
 
 
 
 
1ba3f22
 
c119738
bc345ce
9a997e4
8d5cb63
 
 
 
bc345ce
 
 
 
 
1ba3f22
 
 
8d5cb63
1ba3f22
 
9a997e4
8d5cb63
 
9a997e4
0287aa5
bc345ce
1ba3f22
 
c119738
 
9a997e4
c119738
1ba3f22
 
0287aa5
1ba3f22
 
 
c119738
9a997e4
c119738
1ba3f22
 
0287aa5
 
1ba3f22
 
c119738
1ba3f22
9a997e4
 
 
1ba3f22
 
 
 
 
 
 
 
bc345ce
1ba3f22
 
 
 
 
 
 
 
 
 
 
bc345ce
1ba3f22
 
 
 
 
 
 
7ba6721
 
 
0287aa5
bc345ce
1ba3f22
 
 
7ba6721
1ba3f22
 
bc345ce
 
 
 
 
 
9a997e4
 
 
bc345ce
8d5cb63
bc345ce
 
9a997e4
1ba3f22
9a997e4
 
 
bc345ce
 
 
9a997e4
1ba3f22
9a997e4
 
 
bc345ce
8d5cb63
bc345ce
9a997e4
1ba3f22
9a997e4
bc345ce
1ba3f22
9a997e4
 
 
bc345ce
7ba6721
9a997e4
1ba3f22
9a997e4
 
 
bc345ce
9a997e4
 
1ba3f22
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""A gradio app for credit card approval prediction using FHE."""

import subprocess
import time
import gradio as gr

from settings import (
    REPO_DIR,
    ACCOUNT_MIN_MAX,
    CHILDREN_MIN_MAX,
    INCOME_MIN_MAX,
    AGE_MIN_MAX,
    SALARIED_MIN_MAX,
    FAMILY_MIN_MAX,
    INCOME_TYPES,
    OCCUPATION_TYPES,
    HOUSING_TYPES,
    EDUCATION_TYPES,
    FAMILY_STATUS,
)
from backend import (
    keygen_send,
    pre_process_encrypt_send_user,
    pre_process_encrypt_send_bank,
    pre_process_encrypt_send_third_party,
    run_fhe,
    get_output,
    decrypt_output,
)


subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
time.sleep(3)


demo = gr.Blocks()


print("Starting the demo...")
with demo:
    gr.Markdown(
        """
        <h1 align="center">Encrypted Credit Card Approval Prediction Using Fully Homomorphic Encryption</h1>
        """
    )

    gr.Markdown("## Client side")

    gr.Markdown("### Step 1: Generate the keys. ")
    # TODO: Re-initialize the key message once generated and sent
    keygen_button = gr.Button("Generate the keys and send evaluation key to the server.")
    client_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False)
    
    gr.Markdown("### Step 2: Infos. ")
    with gr.Row():
        with gr.Column():
            gr.Markdown("### User")
            gender = gr.Radio(["Female", "Male"], label="Gender", value="Female")
            bool_inputs = gr.CheckboxGroup(["Car", "Property", "Work phone", "Phone", "Email"], label="What do you own ?")
            num_children = gr.Slider(**CHILDREN_MIN_MAX, step=1, label="Number of children", info="How many children do you have ?")
            household_size = gr.Slider(**FAMILY_MIN_MAX, step=1, label="Household size", info="How many members does your family have? ?")
            total_income = gr.Slider(**INCOME_MIN_MAX, label="Income", info="What's you total yearly income (in euros) ?")
            age = gr.Slider(**AGE_MIN_MAX, step=1, label="Age", info="How old are you ?")
            income_type = gr.Dropdown(choices=INCOME_TYPES, value=INCOME_TYPES[0], label="Income type", info="What is your main type of income ?")
            education_type = gr.Dropdown(choices=EDUCATION_TYPES, value=EDUCATION_TYPES[0], label="Education", info="What is your education background ?")
            family_status = gr.Dropdown(choices=FAMILY_STATUS, value=FAMILY_STATUS[0], label="Family", info="What is your family status ?")
            occupation_type = gr.Dropdown(choices=OCCUPATION_TYPES, value=OCCUPATION_TYPES[0], label="Occupation", info="What is your main occupation ?")
            housing_type = gr.Dropdown(choices=HOUSING_TYPES, value=HOUSING_TYPES[0], label="Housing", info="In what type of housing do you live ?")

        with gr.Column():
            gr.Markdown("### Bank ")
            account_length = gr.Slider(**ACCOUNT_MIN_MAX, step=1, label="Account length", info="How long have this person had this account (in months) ?")

        with gr.Column():
            gr.Markdown("### Third party ")
            salaried = gr.Radio(["Yes", "No"], label="Is the person salaried ?", value="Yes")
            years_salaried = gr.Slider(**SALARIED_MIN_MAX, step=1, label="Years of employment", info="How long have this person been salaried (in years) ?")


    gr.Markdown("### Step 3: Encrypt  using FHE and send the inputs to the server.")
    with gr.Row():
        with gr.Column():
            gr.Markdown("### User")
            encrypt_button_user = gr.Button("Encrypt the inputs and send to server.")
            
            encrypted_input_user = gr.Textbox(
                label="Encrypted input representation:", max_lines=2, interactive=False
            )


        with gr.Column():
            gr.Markdown("### Bank ")
            encrypt_button_bank = gr.Button("Encrypt the inputs and send to server.")

            encrypted_input_bank = gr.Textbox(
                label="Encrypted input representation:", max_lines=2, interactive=False
            )


        with gr.Column():
            gr.Markdown("### Third Party ")
            encrypt_button_third_party = gr.Button("Encrypt the inputs and send to server.")

            encrypted_input_third_party = gr.Textbox(
                label="Encrypted input representation:", max_lines=2, interactive=False
            )

    gr.Markdown("## Server side")
    gr.Markdown(
        "The encrypted values are received by the server. The server can then compute the prediction "
        "directly over them. Once the computation is finished, the server returns "
        "the encrypted result to the client."
    )

    gr.Markdown("### Step 4: Run FHE execution.")
    execute_fhe_button = gr.Button("Run FHE execution.")
    fhe_execution_time = gr.Textbox(
        label="Total FHE execution time (in seconds):", max_lines=1, interactive=False
    )

    gr.Markdown("## Client side")  
    gr.Markdown(
        "The encrypted output is sent back to the client, who can finally decrypt it with the "
        "private key."
    )

    gr.Markdown("### Step 5: Receive the encrypted output from the server.")
    gr.Markdown(
        "The output displayed here is the encrypted result sent by the server, which has been "
        "decrypted using a different private key. This is only used to visually represent an "
        "encrypted output."
    )
    get_output_button = gr.Button("Receive the encrypted output from the server.")

    encrypted_output_representation = gr.Textbox(
        label="Encrypted output representation: ", max_lines=1, interactive=False
    )

    gr.Markdown("### Step 6: Decrypt the output.")
    decrypt_button = gr.Button("Decrypt the output")

    prediction_output = gr.Textbox(
        label="Credit card approval high risk: ", max_lines=1, interactive=False
    )

    # Button generate the keys
    keygen_button.click(
        keygen_send,
        outputs=[client_id, keygen_button],
    )

    # Button to pre-process, generate the key, encrypt and send the user inputs from the client 
    # side to the server
    encrypt_button_user.click(
        pre_process_encrypt_send_user,
        inputs=[client_id, gender, bool_inputs, num_children, household_size, total_income, age, \
                income_type, education_type, family_status, occupation_type, housing_type],
        outputs=[encrypted_input_user],
    )

    # Button to pre-process, generate the key, encrypt and send the bank inputs from the client 
    # side to the server
    encrypt_button_bank.click(
        pre_process_encrypt_send_bank,
        inputs=[client_id, account_length],
        outputs=[encrypted_input_bank],
    )

    # Button to pre-process, generate the key, encrypt and send the third party inputs from the 
    # client side to the server    
    encrypt_button_third_party.click(
        pre_process_encrypt_send_third_party,
        inputs=[client_id, salaried, years_salaried],
        outputs=[encrypted_input_third_party],
    )

    # Button to send the encodings to the server using post method
    execute_fhe_button.click(run_fhe, inputs=[client_id], outputs=[fhe_execution_time])

    # Button to send the encodings to the server using post method
    get_output_button.click(
        get_output, 
        inputs=[client_id], 
        outputs=[encrypted_output_representation],
    )

    # Button to decrypt the output as the user
    decrypt_button.click(
        decrypt_output,
        inputs=[client_id],
        outputs=[prediction_output],
    )

    gr.Markdown(
        "The app was built with [Concrete-ML](https://github.com/zama-ai/concrete-ml), a "
        "Privacy-Preserving Machine Learning (PPML) open-source set of tools by [Zama](https://zama.ai/). "
        "Try it yourself and don't forget to star on Github &#11088;."
    )

demo.launch(share=False)