File size: 2,532 Bytes
9a997e4 c119738 18ba8c1 c119738 9a997e4 c119738 9a997e4 c119738 9a997e4 c119738 9a997e4 c119738 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
"""Modified classes for use for Client-Server interface with multi-inputs circuits."""
import numpy
import copy
from concrete.fhe import Value, EvaluationKeys
from concrete.ml.deployment.fhe_client_server import FHEModelClient, FHEModelDev, FHEModelServer
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBClassifier
class MultiInputsFHEModelDev(FHEModelDev):
def __init__(self, *arg, **kwargs):
super().__init__(*arg, **kwargs)
model = copy.copy(self.model)
model.__class__ = ConcreteXGBClassifier
self.model = model
class MultiInputsFHEModelClient(FHEModelClient):
def __init__(self, *args, nb_inputs=1, **kwargs):
self.nb_inputs = nb_inputs
super().__init__(*args, **kwargs)
def quantize_encrypt_serialize_multi_inputs(
self,
x: numpy.ndarray,
input_index,
processed_input_shape,
input_slice
) -> bytes:
x_padded = numpy.zeros(processed_input_shape)
x_padded[:, input_slice] = x
q_x_padded = self.model.quantize_input(x_padded)
q_x = q_x_padded[:, input_slice]
q_x_inputs = [None for _ in range(self.nb_inputs)]
q_x_inputs[input_index] = q_x
# Encrypt the values
q_x_enc = self.client.encrypt(*q_x_inputs)
# Serialize the encrypted values to be sent to the server
q_x_enc_ser = q_x_enc[input_index].serialize()
return q_x_enc_ser
class MultiInputsFHEModelServer(FHEModelServer):
def run(
self,
*serialized_encrypted_quantized_data: bytes,
serialized_evaluation_keys: bytes,
) -> bytes:
"""Run the model on the server over encrypted data.
Args:
serialized_encrypted_quantized_data (bytes): the encrypted, quantized
and serialized data
serialized_evaluation_keys (bytes): the serialized evaluation keys
Returns:
bytes: the result of the model
"""
assert self.server is not None, "Model has not been loaded."
deserialized_encrypted_quantized_data = tuple(Value.deserialize(data) for data in serialized_encrypted_quantized_data)
deserialized_evaluation_keys = EvaluationKeys.deserialize(serialized_evaluation_keys)
result = self.server.run(
*deserialized_encrypted_quantized_data, evaluation_keys=deserialized_evaluation_keys
)
serialized_result = result.serialize()
return serialized_result |