File size: 3,692 Bytes
9a997e4
 
 
 
 
 
 
 
 
 
 
a241bb3
 
 
 
 
 
 
 
 
 
 
9a997e4
 
a241bb3
9a997e4
 
 
 
 
 
 
 
 
 
 
0e9fc02
 
 
 
 
 
747c295
993f2a6
9a997e4
 
 
 
cb3c1a3
9a997e4
 
a241bb3
 
 
9a997e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec21179
9a997e4
ec21179
9a997e4
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""Train and compile the model."""

import shutil
import numpy
import pandas
import pickle

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from imblearn.over_sampling import SMOTE

from settings import (
    DEPLOYMENT_PATH, 
    RANDOM_STATE, 
    DATA_PATH, 
    INPUT_SLICES, 
    PRE_PROCESSOR_USER_PATH, 
    PRE_PROCESSOR_THIRD_PARTY_PATH,
    USER_COLUMNS,
    BANK_COLUMNS,
    THIRD_PARTY_COLUMNS,
)
from utils.client_server_interface import MultiInputsFHEModelDev
from utils.model import MultiInputXGBClassifier
from utils.pre_processing import get_pre_processors


def get_processed_multi_inputs(data):
    return (
        data[:, INPUT_SLICES["user"]], 
        data[:, INPUT_SLICES["bank"]], 
        data[:, INPUT_SLICES["third_party"]]
    )

print("Load and pre-process the data")

# Original data set can be found here : 
# https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction/data
# It then has been cleaned using the following notebook : 
# https://www.kaggle.com/code/samuelcortinhas/credit-cards-data-cleaning
# A few additional pre-processing steps has bee applied to this data set as well : 
# - "ID" column has been removed 
# - "Total_income" values have been multiplied by 0.14 to make its median match France's annual
#    salary one from 2023 (22050 euros) 
data = pandas.read_csv(DATA_PATH, encoding="utf-8")

# Define input and target data
data_x = data.copy()
data_y = data_x.pop("Target").copy()

# Get data from all parties
data_user = data_x[USER_COLUMNS].copy()
data_bank = data_x[BANK_COLUMNS].copy()
data_third_party = data_x[THIRD_PARTY_COLUMNS].copy()

# Feature engineer the data
pre_processor_user, pre_processor_third_party = get_pre_processors()

preprocessed_data_user = pre_processor_user.fit_transform(data_user)
preprocessed_data_bank = data_bank.to_numpy()
preprocessed_data_third_party = pre_processor_third_party.fit_transform(data_third_party)

preprocessed_data_x = numpy.concatenate((preprocessed_data_user, preprocessed_data_bank, preprocessed_data_third_party), axis=1)

# The initial data-set is very imbalanced: use SMOTE to get better results
x, y = SMOTE().fit_resample(preprocessed_data_x, data_y)

# Retrieve the training and testing data
X_train, X_test, y_train, y_test = train_test_split(
    x, y, stratify=y, test_size=0.3, random_state=RANDOM_STATE
)


print("\nTrain and compile the model")

model = MultiInputXGBClassifier(max_depth=3, n_estimators=40)

model, sklearn_model = model.fit_benchmark(X_train, y_train)
 
multi_inputs_train = get_processed_multi_inputs(X_train)

model.compile(*multi_inputs_train, inputs_encryption_status=["encrypted", "encrypted", "encrypted"])

# Delete the deployment folder and its content if it already exists
if DEPLOYMENT_PATH.is_dir():
    shutil.rmtree(DEPLOYMENT_PATH)


print("\nEvaluate the models")

y_pred_sklearn = sklearn_model.predict(X_test)

print(f"Sklearn accuracy score : {accuracy_score(y_test, y_pred_sklearn )*100:.2f}%")

multi_inputs_test = get_processed_multi_inputs(X_test)

y_pred_simulated = model.predict_multi_inputs(*multi_inputs_test, simulate=True)

print(f"Concrete ML accuracy score (simulated) : {accuracy_score(y_test, y_pred_simulated)*100:.2f}%")


print("\nSave deployment files")

# Save files needed for deployment (and enable cross-platform deployment)
fhe_dev = MultiInputsFHEModelDev(DEPLOYMENT_PATH, model)
fhe_dev.save(via_mlir=True)

# Save pre-processors
with PRE_PROCESSOR_USER_PATH.open('wb') as file:
    pickle.dump(pre_processor_user, file)

with PRE_PROCESSOR_THIRD_PARTY_PATH.open('wb') as file:
    pickle.dump(pre_processor_third_party, file)

print("\nDone !")