romanbredehoft-zama's picture
Merge step 5 & 6
1ad0c1c
raw
history blame
18 kB
"""Backend functions used in the app."""
import os
import shutil
import gradio as gr
import numpy
import requests
import pickle
import pandas
from itertools import chain
from settings import (
SERVER_URL,
FHE_KEYS,
CLIENT_FILES,
SERVER_FILES,
APPROVAL_DEPLOYMENT_PATH,
EXPLAIN_DEPLOYMENT_PATH,
APPROVAL_PROCESSED_INPUT_SHAPE,
EXPLAIN_PROCESSED_INPUT_SHAPE,
INPUT_INDEXES,
APPROVAL_INPUT_SLICES,
EXPLAIN_INPUT_SLICES,
PRE_PROCESSOR_USER_PATH,
PRE_PROCESSOR_BANK_PATH,
PRE_PROCESSOR_THIRD_PARTY_PATH,
CLIENT_TYPES,
USER_COLUMNS,
BANK_COLUMNS,
APPROVAL_THIRD_PARTY_COLUMNS,
)
from utils.client_server_interface import MultiInputsFHEModelClient, MultiInputsFHEModelServer
# Load the server used for explaining the prediction
EXPLAIN_FHE_SERVER = MultiInputsFHEModelServer(EXPLAIN_DEPLOYMENT_PATH)
# Load pre-processor instances
with (
PRE_PROCESSOR_USER_PATH.open('rb') as file_user,
PRE_PROCESSOR_BANK_PATH.open('rb') as file_bank,
PRE_PROCESSOR_THIRD_PARTY_PATH.open('rb') as file_third_party,
):
PRE_PROCESSOR_USER = pickle.load(file_user)
PRE_PROCESSOR_BANK = pickle.load(file_bank)
PRE_PROCESSOR_THIRD_PARTY = pickle.load(file_third_party)
def shorten_bytes_object(bytes_object, limit=500):
"""Shorten the input bytes object to a given length.
Encrypted data is too large for displaying it in the browser using Gradio. This function
provides a shorten representation of it.
Args:
bytes_object (bytes): The input to shorten
limit (int): The length to consider. Default to 500.
Returns:
str: Hexadecimal string shorten representation of the input byte object.
"""
# Define a shift for better display
shift = 100
return bytes_object[shift : limit + shift].hex()
def clean_temporary_files(n_keys=20):
"""Clean older keys and encrypted files.
A maximum of n_keys keys and associated temporary files are allowed to be stored. Once this
limit is reached, the oldest files are deleted.
Args:
n_keys (int): The maximum number of keys and associated files to be stored. Default to 20.
"""
# Get the oldest key files in the key directory
key_dirs = sorted(FHE_KEYS.iterdir(), key=os.path.getmtime)
# If more than n_keys keys are found, remove the oldest
client_ids = []
if len(key_dirs) > n_keys:
n_keys_to_delete = len(key_dirs) - n_keys
for key_dir in key_dirs[:n_keys_to_delete]:
client_ids.append(key_dir.name)
shutil.rmtree(key_dir)
# Delete all files related to the IDs whose keys were deleted
for directory in chain(CLIENT_FILES.iterdir(), SERVER_FILES.iterdir()):
for client_id in client_ids:
if client_id in directory.name:
shutil.rmtree(directory)
def _get_client(client_id, is_approval=True):
"""Get the client instance.
Args:
client_id (int): The client ID to consider.
is_approval (bool): If client is representing the 'approval' model (else, it is
representing the 'explain' model). Default to True.
Returns:
FHEModelClient: The client instance.
"""
key_suffix = "approval" if is_approval else "explain"
key_dir = FHE_KEYS / f"{client_id}_{key_suffix}"
client_dir = APPROVAL_DEPLOYMENT_PATH if is_approval else EXPLAIN_DEPLOYMENT_PATH
return MultiInputsFHEModelClient(client_dir, key_dir=key_dir, nb_inputs=len(CLIENT_TYPES))
def _get_client_file_path(name, client_id, client_type=None):
"""Get the file path for the client.
Args:
name (str): The desired file name (either 'evaluation_key', 'encrypted_inputs' or
'encrypted_outputs').
client_id (int): The client ID to consider.
client_type (Optional[str]): The type of user to consider (either 'user', 'bank',
'third_party' or None). Default to None, which is used for evaluation key and output.
Returns:
pathlib.Path: The file path.
"""
client_type_suffix = ""
if client_type is not None:
client_type_suffix = f"_{client_type}"
dir_path = CLIENT_FILES / f"{client_id}"
dir_path.mkdir(exist_ok=True)
return dir_path / f"{name}{client_type_suffix}"
def _send_to_server(client_id, client_type, file_name):
"""Send the encrypted inputs or the evaluation key to the server.
Args:
client_id (int): The client ID to consider.
client_type (Optional[str]): The type of client to consider (either 'user', 'bank',
'third_party' or None).
file_name (str): File name to send (either 'evaluation_key' or 'encrypted_inputs').
"""
# Get the paths to the encrypted inputs
encrypted_file_path = _get_client_file_path(file_name, client_id, client_type)
# Define the data and files to post
data = {
"client_id": client_id,
"client_type": client_type,
"file_name": file_name,
}
files = [
("files", open(encrypted_file_path, "rb")),
]
# Send the encrypted inputs or evaluation key to the server
url = SERVER_URL + "send_file"
with requests.post(
url=url,
data=data,
files=files,
) as response:
return response.ok
def keygen_send():
"""Generate the private and evaluation key, and send the evaluation key to the server.
Returns:
client_id (str): The current client ID to consider.
"""
# Clean temporary files
clean_temporary_files()
# Create an ID for the current client to consider
client_id = numpy.random.randint(0, 2**32)
# Retrieve the client instance
client = _get_client(client_id)
# Generate the private and evaluation keys
client.generate_private_and_evaluation_keys(force=True)
# Retrieve the serialized evaluation key
evaluation_key = client.get_serialized_evaluation_keys()
file_name = "evaluation_key"
# Save evaluation key as bytes in a file as it is too large to pass through regular Gradio
# buttons (see https://github.com/gradio-app/gradio/issues/1877)
evaluation_key_path = _get_client_file_path(file_name, client_id)
with evaluation_key_path.open("wb") as evaluation_key_file:
evaluation_key_file.write(evaluation_key)
# Send the evaluation key to the server
_send_to_server(client_id, None, file_name)
# Create a truncated version of the evaluation key for display
evaluation_key_short = shorten_bytes_object(evaluation_key)
return client_id, evaluation_key_short, gr.update(value="Keys are generated and evaluation key is sent βœ…")
def _encrypt_send(client_id, inputs, client_type, app_mode=True):
"""Encrypt the given inputs for a specific client and send it to the server.
Args:
client_id (str): The current client ID to consider.
inputs (numpy.ndarray): The inputs to encrypt.
client_type (str): The type of client to consider (either 'user', 'bank' or 'third_party').
Returns:
encrypted_inputs_short (str): A short representation of the encrypted input to send in hex.
"""
if client_id == "":
raise gr.Error("Please generate the keys first.")
# Retrieve the client instance
client = _get_client(client_id)
# Quantize, encrypt and serialize the inputs
encrypted_inputs = client.quantize_encrypt_serialize_multi_inputs(
inputs,
input_index=INPUT_INDEXES[client_type],
processed_input_shape=APPROVAL_PROCESSED_INPUT_SHAPE,
input_slice=APPROVAL_INPUT_SLICES[client_type],
)
file_name = "encrypted_inputs"
# Save encrypted_inputs to bytes in a file, since too large to pass through regular Gradio
# buttons, https://github.com/gradio-app/gradio/issues/1877
encrypted_inputs_path = _get_client_file_path(file_name, client_id, client_type)
with encrypted_inputs_path.open("wb") as encrypted_inputs_file:
encrypted_inputs_file.write(encrypted_inputs)
# Create a truncated version of the encrypted inputs for display
encrypted_inputs_short = shorten_bytes_object(encrypted_inputs)
_send_to_server(client_id, client_type, file_name)
return encrypted_inputs_short
def _pre_process_user(*inputs):
"""Pre-process the user inputs.
Args:
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(numpy.ndarray): The pre-processed inputs.
"""
bool_inputs, num_children, household_size, total_income, age, income_type, education_type, \
family_status, occupation_type, housing_type = inputs
# Retrieve boolean values
own_car = "Car" in bool_inputs
own_property = "Property" in bool_inputs
mobile_phone = "Mobile phone" in bool_inputs
user_inputs = pandas.DataFrame({
"Own_car": [own_car],
"Own_property": [own_property],
"Mobile_phone": [mobile_phone],
"Num_children": [num_children],
"Household_size": [household_size],
"Total_income": [total_income],
"Age": [age],
"Income_type": [income_type],
"Education_type": [education_type],
"Family_status": [family_status],
"Occupation_type": [occupation_type],
"Housing_type": [housing_type],
})
user_inputs = user_inputs.reindex(USER_COLUMNS, axis=1)
preprocessed_user_inputs = PRE_PROCESSOR_USER.transform(user_inputs)
return preprocessed_user_inputs
def pre_process_encrypt_send_user(client_id, *inputs):
"""Pre-process, encrypt and send the user inputs for a specific client to the server.
Args:
client_id (str): The current client ID to consider.
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(str): A short representation of the encrypted input to send in hex.
"""
preprocessed_user_inputs = _pre_process_user(*inputs)
return _encrypt_send(client_id, preprocessed_user_inputs, "user")
def _pre_process_bank(*inputs):
"""Pre-process the bank inputs.
Args:
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(numpy.ndarray): The pre-processed inputs.
"""
account_age = inputs[0]
bank_inputs = pandas.DataFrame({
"Account_age": [account_age],
})
bank_inputs = bank_inputs.reindex(BANK_COLUMNS, axis=1)
preprocessed_bank_inputs = PRE_PROCESSOR_BANK.transform(bank_inputs)
return preprocessed_bank_inputs
def pre_process_encrypt_send_bank(client_id, *inputs):
"""Pre-process, encrypt and send the bank inputs for a specific client to the server.
Args:
client_id (str): The current client ID to consider.
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(str): A short representation of the encrypted input to send in hex.
"""
preprocessed_bank_inputs = _pre_process_bank(*inputs)
return _encrypt_send(client_id, preprocessed_bank_inputs, "bank")
def _pre_process_third_party(*inputs):
"""Pre-process the third party inputs.
Args:
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(numpy.ndarray): The pre-processed inputs.
"""
third_party_data = {}
if len(inputs) == 1:
employed = inputs[0]
else:
employed, years_employed = inputs
third_party_data["Years_employed"] = [years_employed]
is_employed = employed == "Yes"
third_party_data["Employed"] = [is_employed]
third_party_inputs = pandas.DataFrame(third_party_data)
if len(inputs) == 1:
preprocessed_third_party_inputs = third_party_inputs.to_numpy()
else:
third_party_inputs = third_party_inputs.reindex(APPROVAL_THIRD_PARTY_COLUMNS, axis=1)
preprocessed_third_party_inputs = PRE_PROCESSOR_THIRD_PARTY.transform(third_party_inputs)
return preprocessed_third_party_inputs
def pre_process_encrypt_send_third_party(client_id, *inputs):
"""Pre-process, encrypt and send the third party inputs for a specific client to the server.
Args:
client_id (str): The current client ID to consider.
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(str): A short representation of the encrypted input to send in hex.
"""
preprocessed_third_party_inputs = _pre_process_third_party(*inputs)
return _encrypt_send(client_id, preprocessed_third_party_inputs, "third_party")
def run_fhe(client_id):
"""Run the model on the encrypted inputs previously sent using FHE.
Args:
client_id (str): The current client ID to consider.
"""
if client_id == "":
raise gr.Error("Please generate the keys first.")
data = {
"client_id": client_id,
}
# Trigger the FHE execution on the encrypted inputs previously sent
url = SERVER_URL + "run_fhe"
with requests.post(
url=url,
data=data,
) as response:
if response.ok:
return response.json()
else:
raise gr.Error("Please send the inputs from all three parties to the server first.")
def get_output_and_decrypt(client_id):
"""Retrieve the encrypted output.
Args:
client_id (str): The current client ID to consider.
Returns:
(Tuple[str, bytes]): The output message based on the decrypted prediction as well as
a byte short representation of the encrypted output.
"""
if client_id == "":
raise gr.Error("Please generate the keys first.")
data = {
"client_id": client_id,
}
# Retrieve the encrypted output
url = SERVER_URL + "get_output"
with requests.post(
url=url,
data=data,
) as response:
if response.ok:
encrypted_output_proba = response.content
# Create a truncated version of the encrypted inputs for display
encrypted_output_short = shorten_bytes_object(encrypted_output_proba)
# Retrieve the client API
client = _get_client(client_id)
# Deserialize, decrypt and post-process the encrypted output
output_proba = client.deserialize_decrypt_dequantize(encrypted_output_proba)
# Determine the predicted class
output = numpy.argmax(output_proba, axis=1).squeeze()
return (
"Credit card is likely to be approved βœ…" if output == 1
else "Credit card is likely to be denied ❌",
encrypted_output_short,
)
else:
raise gr.Error("Please run the FHE execution first and wait for it to be completed.")
def years_employed_encrypt_run_decrypt(client_id, prediction_output, *inputs):
"""Pre-process and encrypt the inputs, run the prediction in FHE and decrypt the output.
Args:
client_id (str): The current client ID to consider.
prediction_output (str): The initial prediction output. This parameter is only used to
throw an error in case the prediction was positive.
*inputs (Tuple[numpy.ndarray]): The inputs to consider.
Returns:
(str): A message indicating the number of additional years of employment that could be
required in order to increase the chance of
credit card approval.
"""
if "approved" in prediction_output:
raise gr.Error(
"Explaining the prediction can only be done if the credit card is likely to be denied."
)
# Retrieve the client instance
client = _get_client(client_id, is_approval=False)
# Generate the private and evaluation keys
client.generate_private_and_evaluation_keys(force=False)
# Retrieve the serialized evaluation key
evaluation_key = client.get_serialized_evaluation_keys()
bool_inputs, num_children, household_size, total_income, age, income_type, education_type, \
family_status, occupation_type, housing_type, account_age, employed, years_employed = inputs
preprocessed_user_inputs = _pre_process_user(
bool_inputs, num_children, household_size, total_income, age, income_type, education_type,
family_status, occupation_type, housing_type,
)
preprocessed_bank_inputs = _pre_process_bank(account_age)
preprocessed_third_party_inputs = _pre_process_third_party(employed)
preprocessed_inputs = [
preprocessed_user_inputs,
preprocessed_bank_inputs,
preprocessed_third_party_inputs
]
# Quantize, encrypt and serialize the inputs
encrypted_inputs = []
for client_type, preprocessed_input in zip(CLIENT_TYPES, preprocessed_inputs):
encrypted_input = client.quantize_encrypt_serialize_multi_inputs(
preprocessed_input,
input_index=INPUT_INDEXES[client_type],
processed_input_shape=EXPLAIN_PROCESSED_INPUT_SHAPE,
input_slice=EXPLAIN_INPUT_SLICES[client_type],
)
encrypted_inputs.append(encrypted_input)
# Run the FHE computation
encrypted_output = EXPLAIN_FHE_SERVER.run(
*encrypted_inputs,
serialized_evaluation_keys=evaluation_key
)
# Decrypt the output
output_prediction = client.deserialize_decrypt_dequantize(encrypted_output)
# Get the difference with the initial 'years of employment' input
years_employed_diff = int(numpy.ceil(output_prediction.squeeze() - years_employed))
if years_employed_diff > 0:
return (
f"Having at least {years_employed_diff} more years of employment would increase "
"your chance of having your credit card approved."
)
return (
"The number of years of employment you provided seems to be enough. The negative prediction "
"might come from other inputs."
)