romanbredehoft-zama's picture
Add encrypted output representation
7ba6721
raw
history blame
13.5 kB
"""Backend functions used in the app."""
import os
import shutil
import gradio as gr
import numpy
import requests
import pickle
import pandas
from itertools import chain
from settings import (
SERVER_URL,
FHE_KEYS,
CLIENT_FILES,
SERVER_FILES,
DEPLOYMENT_PATH,
INITIAL_INPUT_SHAPE,
INPUT_INDEXES,
INPUT_SLICES,
PRE_PROCESSOR_USER_PATH,
PRE_PROCESSOR_THIRD_PARTY_PATH,
CLIENT_TYPES,
)
from utils.client_server_interface import MultiInputsFHEModelClient
# Load pre-processor instances
with PRE_PROCESSOR_USER_PATH.open('rb') as file:
PRE_PROCESSOR_USER = pickle.load(file)
with PRE_PROCESSOR_THIRD_PARTY_PATH.open('rb') as file:
PRE_PROCESSOR_THIRD_PARTY = pickle.load(file)
def shorten_bytes_object(bytes_object, limit=500):
"""Shorten the input bytes object to a given length.
Encrypted data is too large for displaying it in the browser using Gradio. This function
provides a shorten representation of it.
Args:
bytes_object (bytes): The input to shorten
limit (int): The length to consider. Default to 500.
Returns:
str: Hexadecimal string shorten representation of the input byte object.
"""
# Define a shift for better display
shift = 100
return bytes_object[shift : limit + shift].hex()
def clean_temporary_files(n_keys=20):
"""Clean keys and encrypted inputs.
A maximum of n_keys keys and associated temporary files are allowed to be stored. Once this
limit is reached, the oldest files are deleted.
Args:
n_keys (int): The maximum number of keys and associated files to be stored. Default to 20.
"""
# Get the oldest key files in the key directory
key_dirs = sorted(FHE_KEYS.iterdir(), key=os.path.getmtime)
# If more than n_keys keys are found, remove the oldest
user_ids = []
if len(key_dirs) > n_keys:
n_keys_to_delete = len(key_dirs) - n_keys
for key_dir in key_dirs[:n_keys_to_delete]:
user_ids.append(key_dir.name)
shutil.rmtree(key_dir)
# Get all the encrypted objects in the temporary folder
client_files = CLIENT_FILES.iterdir()
server_files = SERVER_FILES.iterdir()
# Delete all files related to the ids whose keys were deleted
for file in chain(client_files, server_files):
for user_id in user_ids:
if user_id in file.name:
file.unlink()
def _get_client(client_id, client_type):
"""Get the client API.
Args:
client_id (int): The client ID to consider.
client_type (str): The type of user to consider (either 'user', 'bank' or 'third_party').
Returns:
FHEModelClient: The client API.
"""
key_dir = FHE_KEYS / f"{client_type}_{client_id}"
return MultiInputsFHEModelClient(DEPLOYMENT_PATH, key_dir=key_dir, nb_inputs=len(CLIENT_TYPES))
def _keygen(client_id, client_type):
"""Generate the private key associated to a client.
Args:
client_id (int): The client ID to consider.
client_type (str): The type of client to consider (either 'user', 'bank' or 'third_party').
"""
# Clean temporary files
clean_temporary_files()
# Retrieve the client instance
client = _get_client(client_id, client_type)
# Generate a private key
client.generate_private_and_evaluation_keys(force=True)
# Retrieve the serialized evaluation key. In this case, as circuits are fully leveled, this
# evaluation key is empty. However, for software reasons, it is still needed for proper FHE
# execution
evaluation_key = client.get_serialized_evaluation_keys()
# Save evaluation_key as bytes in a file as it is too large to pass through regular Gradio
# buttons (see https://github.com/gradio-app/gradio/issues/1877)
evaluation_key_path = _get_client_file_path("evaluation_key", client_id, client_type)
with evaluation_key_path.open("wb") as evaluation_key_file:
evaluation_key_file.write(evaluation_key)
def _send_input(client_id, client_type):
"""Send the encrypted inputs as well as the evaluation key to the server.
Args:
client_id (int): The client ID to consider.
client_type (str): The type of client to consider (either 'user', 'bank' or 'third_party').
"""
# Get the paths to the evaluation key and encrypted inputs
evaluation_key_path = _get_client_file_path("evaluation_key", client_id, client_type)
encrypted_input_path = _get_client_file_path("encrypted_inputs", client_id, client_type)
# Define the data and files to post
data = {
"client_id": client_id,
"client_type": client_type,
}
files = [
("files", open(encrypted_input_path, "rb")),
("files", open(evaluation_key_path, "rb")),
]
# Send the encrypted inputs and evaluation key to the server
url = SERVER_URL + "send_input"
with requests.post(
url=url,
data=data,
files=files,
) as response:
return response.ok
def _get_client_file_path(name, client_id, client_type):
"""Get the correct temporary file path for the client.
Args:
name (str): The desired file name (either 'evaluation_key' or 'encrypted_inputs').
client_id (int): The client ID to consider.
client_type (str): The type of user to consider (either 'user', 'bank' or 'third_party').
Returns:
pathlib.Path: The file path.
"""
return CLIENT_FILES / f"{name}_{client_type}_{client_id}"
def _keygen_encrypt_send(inputs, client_type):
"""Encrypt the given inputs for a specific client.
Args:
inputs (numpy.ndarray): The inputs to encrypt.
client_type (str): The type of client to consider (either 'user', 'bank' or 'third_party').
Returns:
client_id, encrypted_inputs_short (int, bytes): Integer ID representing the current client
and a byte short representation of the encrypted input to send.
"""
# Create an ID for the current client to consider
client_id = numpy.random.randint(0, 2**32)
_keygen(client_id, client_type)
# Retrieve the client instance
client = _get_client(client_id, client_type)
# TODO : pre-process the data first
# Quantize, encrypt and serialize the inputs
encrypted_inputs = client.quantize_encrypt_serialize_multi_inputs(
inputs,
input_index=INPUT_INDEXES[client_type],
initial_input_shape=INITIAL_INPUT_SHAPE,
input_slice=INPUT_SLICES[client_type],
)
# Save encrypted_inputs to bytes in a file, since too large to pass through regular Gradio
# buttons, https://github.com/gradio-app/gradio/issues/1877
encrypted_inputs_path = _get_client_file_path("encrypted_inputs", client_id, client_type)
with encrypted_inputs_path.open("wb") as encrypted_inputs_file:
encrypted_inputs_file.write(encrypted_inputs)
# Create a truncated version of the encrypted inputs for display
encrypted_inputs_short = shorten_bytes_object(encrypted_inputs)
_send_input(client_id, client_type)
# TODO: also return private key representation if possible
return client_id, encrypted_inputs_short
def pre_process_keygen_encrypt_send_user(*inputs):
"""Pre-process the given inputs for a specific client.
Args:
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(int, bytes): Integer ID representing the current client and a byte short representation of
the encrypted input to send.
"""
gender, bool_inputs, num_children, num_family, total_income, age, income_type, education_type, \
family_status, occupation_type, housing_type = inputs
# Encoding given in https://www.kaggle.com/code/samuelcortinhas/credit-cards-data-cleaning
# for "Gender" is M ('Male') -> 1 and F ('Female') -> 0
gender = gender == "Male"
# Retrieve boolean values
own_car = "Car" in bool_inputs
own_property = "Property" in bool_inputs
work_phone = "Work phone" in bool_inputs
phone = "Phone" in bool_inputs
email = "Email" in bool_inputs
user_inputs = pandas.DataFrame({
"Gender": [gender],
"Own_car": [own_car],
"Own_property": [own_property],
"Work_phone": [work_phone],
"Phone": [phone],
"Email": [email],
"Num_children": num_children,
"Num_family": num_family,
"Total_income": total_income,
"Age": age,
"Income_type": income_type,
"Education_type": education_type,
"Family_status": family_status,
"Occupation_type": occupation_type,
"Housing_type": housing_type,
})
preprocessed_user_inputs = PRE_PROCESSOR_USER.transform(user_inputs)
return _keygen_encrypt_send(preprocessed_user_inputs, "user")
def pre_process_keygen_encrypt_send_bank(*inputs):
"""Pre-process the given inputs for a specific client.
Args:
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(int, bytes): Integer ID representing the current client and a byte short representation of
the encrypted input to send.
"""
account_length = inputs[0]
return _keygen_encrypt_send(account_length, "bank")
def pre_process_keygen_encrypt_send_third_party(*inputs):
"""Pre-process the given inputs for a specific client.
Args:
*inputs (Tuple[numpy.ndarray]): The inputs to pre-process.
Returns:
(int, bytes): Integer ID representing the current client and a byte short representation of
the encrypted input to send.
"""
employed, years_employed = inputs
# Original dataset contains an "unemployed" feature instead of "employed"
unemployed = employed == "No"
third_party_inputs = pandas.DataFrame({
"Unemployed": [unemployed],
"Years_employed": [years_employed],
})
preprocessed_third_party_inputs = PRE_PROCESSOR_THIRD_PARTY.transform(third_party_inputs)
return _keygen_encrypt_send(preprocessed_third_party_inputs, "third_party")
def run_fhe(user_id, bank_id, third_party_id):
"""Run the model on the encrypted inputs previously sent using FHE.
Args:
user_id (int): The user ID to consider.
bank_id (int): The bank ID to consider.
third_party_id (int): The third party ID to consider.
"""
# TODO : add a warning for users to send all client types' inputs
data = {
"user_id": user_id,
"bank_id": bank_id,
"third_party_id": third_party_id,
}
# Trigger the FHE execution on the encrypted inputs previously sent
url = SERVER_URL + "run_fhe"
with requests.post(
url=url,
data=data,
) as response:
if response.ok:
return response.json()
else:
raise gr.Error("Please wait for the inputs to be sent to the server.")
def get_output(user_id, bank_id, third_party_id):
"""Retrieve the encrypted output.
Args:
user_id (int): The user ID to consider.
bank_id (int): The bank ID to consider.
third_party_id (int): The third party ID to consider.
Returns:
encrypted_output_short (bytes): A byte short representation of the encrypted output.
"""
data = {
"user_id": user_id,
"bank_id": bank_id,
"third_party_id": third_party_id,
}
# Retrieve the encrypted output
url = SERVER_URL + "get_output"
with requests.post(
url=url,
data=data,
) as response:
if response.ok:
encrypted_output = response.content
# Save the encrypted output to bytes in a file as it is too large to pass through regular
# Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
encrypted_output_path = _get_client_file_path("encrypted_output", user_id + bank_id + third_party_id, "output")
with encrypted_output_path.open("wb") as encrypted_output_file:
encrypted_output_file.write(encrypted_output)
# Create a truncated version of the encrypted inputs for display
encrypted_output_short = shorten_bytes_object(encrypted_output)
return encrypted_output_short
else:
raise gr.Error("Please wait for the FHE execution to be completed.")
def decrypt_output(user_id, bank_id, third_party_id):
"""Decrypt the result.
Args:
user_id (int): The user ID to consider.
bank_id (int): The bank ID to consider.
third_party_id (int): The third party ID to consider.
Returns:
output(numpy.ndarray): The decrypted output
"""
# Get the encrypted output path
encrypted_output_path = _get_client_file_path("encrypted_output", user_id + bank_id + third_party_id, "output")
if not encrypted_output_path.is_file():
raise gr.Error("Please run the FHE execution first.")
# Load the encrypted output as bytes
with encrypted_output_path.open("rb") as encrypted_output_file:
encrypted_output_proba = encrypted_output_file.read()
# Retrieve the client API
client = _get_client(user_id, "user")
# Deserialize, decrypt and post-process the encrypted output
output_proba = client.deserialize_decrypt_dequantize(encrypted_output_proba)
# Determine the predicted class
output = numpy.argmax(output_proba, axis=1)
return output