|
"""Data pre-processing functions.""" |
|
|
|
import numpy |
|
from sklearn.compose import ColumnTransformer |
|
from sklearn.pipeline import Pipeline |
|
from sklearn.preprocessing import OneHotEncoder, FunctionTransformer, StandardScaler |
|
|
|
|
|
def _get_pipeline_replace_one_hot(func, value): |
|
return Pipeline([ |
|
("replace", FunctionTransformer( |
|
func, |
|
kw_args={"value": value}, |
|
feature_names_out='one-to-one', |
|
)), |
|
("one_hot", OneHotEncoder(),), |
|
]) |
|
|
|
def _replace_values_eq(column, value): |
|
for desired_value, values_to_replace in value.items(): |
|
column = numpy.where(numpy.isin(column, values_to_replace), desired_value, column) |
|
return column |
|
|
|
def get_pre_processors(): |
|
pre_processor_applicant = ColumnTransformer( |
|
transformers=[ |
|
( |
|
"replace_occupation_type_labor", |
|
_get_pipeline_replace_one_hot( |
|
_replace_values_eq, |
|
{ |
|
"Labor_work": [ |
|
"Cooking Staff", "Carpenter", "Plumber", "Factory Worker", "Bus Driver" |
|
], |
|
"Office_work": [ |
|
"Business Owners", "Office Worker", "Accountant", "Entrepreneur", "Salesperson" |
|
], |
|
"High_tech_work": ["Engineer", "Manager", "Consultant", "Software Developer"], |
|
}, |
|
), |
|
['Occupation_type'] |
|
), |
|
('one_hot_others', OneHotEncoder(), ['Housing_type', 'Family_status', 'Education_type', 'Income_type']), |
|
('standard_scaler', StandardScaler(), ['Num_children', 'Household_size', 'Total_income', 'Age']), |
|
], |
|
remainder='passthrough', |
|
verbose_feature_names_out=False, |
|
) |
|
|
|
pre_processor_bank = ColumnTransformer( |
|
transformers=[ |
|
('standard_scaler', StandardScaler(), ['Account_age']), |
|
], |
|
remainder='passthrough', |
|
verbose_feature_names_out=False, |
|
) |
|
|
|
pre_processor_credit_bureau = ColumnTransformer( |
|
transformers=[], |
|
remainder='passthrough', |
|
verbose_feature_names_out=False, |
|
) |
|
|
|
return pre_processor_applicant, pre_processor_bank, pre_processor_credit_bureau |