"All constants used in the project." from pathlib import Path import pandas # The directory of this project REPO_DIR = Path(__file__).parent # Main necessary directories DEPLOYMENT_PATH = REPO_DIR / "deployment_files" FHE_KEYS = REPO_DIR / ".fhe_keys" CLIENT_FILES = REPO_DIR / "client_files" SERVER_FILES = REPO_DIR / "server_files" # ALl deployment directories APPROVAL_DEPLOYMENT_PATH = DEPLOYMENT_PATH / "approval_model" EXPLAIN_DEPLOYMENT_PATH = DEPLOYMENT_PATH / "explain_model" # Path targeting pre-processor saved files PRE_PROCESSOR_USER_PATH = DEPLOYMENT_PATH / 'pre_processor_user.pkl' PRE_PROCESSOR_BANK_PATH = DEPLOYMENT_PATH / 'pre_processor_bank.pkl' PRE_PROCESSOR_THIRD_PARTY_PATH = DEPLOYMENT_PATH / 'pre_processor_third_party.pkl' # Create the necessary directories FHE_KEYS.mkdir(exist_ok=True) CLIENT_FILES.mkdir(exist_ok=True) SERVER_FILES.mkdir(exist_ok=True) # Store the server's URL SERVER_URL = "http://localhost:8000/" # Path to data file DATA_PATH = "data/data.csv" # Development settings APPROVAL_PROCESSED_INPUT_SHAPE = (1, 39) EXPLAIN_PROCESSED_INPUT_SHAPE = (1, 38) CLIENT_TYPES = ["user", "bank", "third_party"] INPUT_INDEXES = { "user": 0, "bank": 1, "third_party": 2, } APPROVAL_INPUT_SLICES = { "user": slice(0, 36), # First position: start from 0 "bank": slice(36, 37), # Second position: start from n_feature_user "third_party": slice(37, 39), # Third position: start from n_feature_user + n_feature_bank } EXPLAIN_INPUT_SLICES = { "user": slice(0, 36), # First position: start from 0 "bank": slice(36, 37), # Second position: start from n_feature_user "third_party": slice(37, 38), # Third position: start from n_feature_user + n_feature_bank } # Fix column order for pre-processing steps USER_COLUMNS = [ 'Own_car', 'Own_property', 'Mobile_phone', 'Num_children', 'Household_size', 'Total_income', 'Age', 'Income_type', 'Education_type', 'Family_status', 'Housing_type', 'Occupation_type', ] BANK_COLUMNS = ["Account_age"] APPROVAL_THIRD_PARTY_COLUMNS = ["Years_employed", "Employed"] EXPLAIN_THIRD_PARTY_COLUMNS = ["Employed"] _data = pandas.read_csv(DATA_PATH, encoding="utf-8") def get_min_max(data, column): """Get min/max values of a column in order to input them in Gradio's API as key arguments.""" return { "minimum": int(data[column].min()), "maximum": int(data[column].max()), } # App data min and max values ACCOUNT_MIN_MAX = get_min_max(_data, "Account_age") CHILDREN_MIN_MAX = get_min_max(_data, "Num_children") INCOME_MIN_MAX = get_min_max(_data, "Total_income") AGE_MIN_MAX = get_min_max(_data, "Age") EMPLOYED_MIN_MAX = get_min_max(_data, "Years_employed") FAMILY_MIN_MAX = get_min_max(_data, "Household_size") # App data choices INCOME_TYPES = list(_data["Income_type"].unique()) OCCUPATION_TYPES = list(_data["Occupation_type"].unique()) HOUSING_TYPES = list(_data["Housing_type"].unique()) EDUCATION_TYPES = list(_data["Education_type"].unique()) FAMILY_STATUS = list(_data["Family_status"].unique())