"""Train and compile the model.""" import shutil import numpy import pandas import pickle from settings import ( DEPLOYMENT_PATH, DATA_PATH, INPUT_SLICES, PRE_PROCESSOR_USER_PATH, PRE_PROCESSOR_BANK_PATH, PRE_PROCESSOR_THIRD_PARTY_PATH, USER_COLUMNS, BANK_COLUMNS, THIRD_PARTY_COLUMNS, ) from utils.client_server_interface import MultiInputsFHEModelDev from utils.model import MultiInputDecisionTreeClassifier from utils.pre_processing import get_pre_processors def get_processed_multi_inputs(data): return ( data[:, INPUT_SLICES["user"]], data[:, INPUT_SLICES["bank"]], data[:, INPUT_SLICES["third_party"]] ) print("Load and pre-process the data") # Load the data data = pandas.read_csv(DATA_PATH, encoding="utf-8") # Define input and target data data_x = data.copy() data_y = data_x.pop("Target").copy().to_frame() # Get data from all parties data_user = data_x[USER_COLUMNS].copy() data_bank = data_x[BANK_COLUMNS].copy() data_third_party = data_x[THIRD_PARTY_COLUMNS].copy() # Feature engineer the data pre_processor_user, pre_processor_bank, pre_processor_third_party = get_pre_processors() preprocessed_data_user = pre_processor_user.fit_transform(data_user) preprocessed_data_bank = pre_processor_bank.fit_transform(data_bank) preprocessed_data_third_party = pre_processor_third_party.fit_transform(data_third_party) preprocessed_data_x = numpy.concatenate((preprocessed_data_user, preprocessed_data_bank, preprocessed_data_third_party), axis=1) print("\nTrain and compile the model") model = MultiInputDecisionTreeClassifier() model, sklearn_model = model.fit_benchmark(preprocessed_data_x, data_y) multi_inputs_train = get_processed_multi_inputs(preprocessed_data_x) model.compile(*multi_inputs_train, inputs_encryption_status=["encrypted", "encrypted", "encrypted"]) print("\nSave deployment files") # Delete the deployment folder and its content if it already exists if DEPLOYMENT_PATH.is_dir(): shutil.rmtree(DEPLOYMENT_PATH) # Save files needed for deployment (and enable cross-platform deployment) fhe_dev = MultiInputsFHEModelDev(DEPLOYMENT_PATH, model) fhe_dev.save(via_mlir=True) # Save pre-processors with ( PRE_PROCESSOR_USER_PATH.open('wb') as file_user, PRE_PROCESSOR_BANK_PATH.open('wb') as file_bank, PRE_PROCESSOR_THIRD_PARTY_PATH.open('wb') as file_third_party, ): pickle.dump(pre_processor_user, file_user) pickle.dump(pre_processor_bank, file_bank) pickle.dump(pre_processor_third_party, file_third_party) print("\nDone !")