Spaces:
Running
on
Zero
Running
on
Zero
zamalali
commited on
Commit
·
97b2775
1
Parent(s):
553b5fc
Refactor conversation function to remove commented code and improve placeholder image handling
Browse files
app.py
CHANGED
@@ -204,7 +204,6 @@ def conversation(
|
|
204 |
hf_token,
|
205 |
model_path,
|
206 |
):
|
207 |
-
# Initialize the LLM based on inputs
|
208 |
if hf_token.strip() != "" and model_path.strip() != "":
|
209 |
llm = HuggingFaceEndpoint(
|
210 |
repo_id=model_path,
|
@@ -220,7 +219,6 @@ def conversation(
|
|
220 |
huggingfacehub_api_token=os.getenv("P_HF_TOKEN", "None"),
|
221 |
)
|
222 |
|
223 |
-
# Retrieve collections from vector database
|
224 |
text_collection = vectordb_client.get_collection(
|
225 |
"text_db", embedding_function=sentence_transformer_ef
|
226 |
)
|
@@ -228,19 +226,16 @@ def conversation(
|
|
228 |
"image_db", embedding_function=sentence_transformer_ef
|
229 |
)
|
230 |
|
231 |
-
# Query text context
|
232 |
results = text_collection.query(
|
233 |
query_texts=[msg], include=["documents"], n_results=num_context
|
234 |
)["documents"][0]
|
235 |
|
236 |
-
# Query image context
|
237 |
similar_images = image_collection.query(
|
238 |
query_texts=[msg],
|
239 |
include=["metadatas", "distances", "documents"],
|
240 |
n_results=img_context,
|
241 |
)
|
242 |
|
243 |
-
# Initialize image links and descriptions
|
244 |
img_links = similar_images["metadatas"][0] if similar_images["metadatas"] else []
|
245 |
images_and_locs = []
|
246 |
|
@@ -252,11 +247,12 @@ def conversation(
|
|
252 |
except Exception as e:
|
253 |
print(f"Error decoding image: {e}")
|
254 |
|
255 |
-
# Handle case where no images are found
|
256 |
if not images_and_locs:
|
257 |
-
|
|
|
|
|
|
|
258 |
|
259 |
-
# Prepare prompt for the LLM
|
260 |
img_desc = "\n".join(similar_images["documents"][0]) if images_and_locs else "No Images Are Provided"
|
261 |
template = """
|
262 |
Context:
|
@@ -274,14 +270,13 @@ def conversation(
|
|
274 |
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
|
275 |
context = "\n\n".join(results)
|
276 |
|
277 |
-
# Generate response
|
278 |
response = llm(prompt.format(context=context, question=msg, images=img_desc))
|
279 |
|
280 |
-
# Return updated history, text results, and image locations
|
281 |
return history + [(msg, response)], results, images_and_locs
|
282 |
|
283 |
|
284 |
|
|
|
285 |
def check_validity_and_llm(session_states):
|
286 |
if session_states.get("processed", False) == True:
|
287 |
return gr.Tabs(selected=2)
|
|
|
204 |
hf_token,
|
205 |
model_path,
|
206 |
):
|
|
|
207 |
if hf_token.strip() != "" and model_path.strip() != "":
|
208 |
llm = HuggingFaceEndpoint(
|
209 |
repo_id=model_path,
|
|
|
219 |
huggingfacehub_api_token=os.getenv("P_HF_TOKEN", "None"),
|
220 |
)
|
221 |
|
|
|
222 |
text_collection = vectordb_client.get_collection(
|
223 |
"text_db", embedding_function=sentence_transformer_ef
|
224 |
)
|
|
|
226 |
"image_db", embedding_function=sentence_transformer_ef
|
227 |
)
|
228 |
|
|
|
229 |
results = text_collection.query(
|
230 |
query_texts=[msg], include=["documents"], n_results=num_context
|
231 |
)["documents"][0]
|
232 |
|
|
|
233 |
similar_images = image_collection.query(
|
234 |
query_texts=[msg],
|
235 |
include=["metadatas", "distances", "documents"],
|
236 |
n_results=img_context,
|
237 |
)
|
238 |
|
|
|
239 |
img_links = similar_images["metadatas"][0] if similar_images["metadatas"] else []
|
240 |
images_and_locs = []
|
241 |
|
|
|
247 |
except Exception as e:
|
248 |
print(f"Error decoding image: {e}")
|
249 |
|
|
|
250 |
if not images_and_locs:
|
251 |
+
placeholder_path = "assets/placeholder.jpg"
|
252 |
+
if not os.path.exists(placeholder_path):
|
253 |
+
raise FileNotFoundError(f"Placeholder image not found at {placeholder_path}")
|
254 |
+
images_and_locs = [(placeholder_path, "No images found")]
|
255 |
|
|
|
256 |
img_desc = "\n".join(similar_images["documents"][0]) if images_and_locs else "No Images Are Provided"
|
257 |
template = """
|
258 |
Context:
|
|
|
270 |
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
|
271 |
context = "\n\n".join(results)
|
272 |
|
|
|
273 |
response = llm(prompt.format(context=context, question=msg, images=img_desc))
|
274 |
|
|
|
275 |
return history + [(msg, response)], results, images_and_locs
|
276 |
|
277 |
|
278 |
|
279 |
+
|
280 |
def check_validity_and_llm(session_states):
|
281 |
if session_states.get("processed", False) == True:
|
282 |
return gr.Tabs(selected=2)
|