Spaces:
Build error
Build error
File size: 4,223 Bytes
7925ce3 737c5eb 7925ce3 89b96b3 7925ce3 737c5eb 7925ce3 84ff670 7925ce3 0ae57d5 7925ce3 b2998a9 7925ce3 2a597a5 7925ce3 91de8a4 7925ce3 89b96b3 7925ce3 89b96b3 7925ce3 89b96b3 7925ce3 89b96b3 7925ce3 89b96b3 7925ce3 89b96b3 7925ce3 89b96b3 7925ce3 0ae57d5 118531f 0ae57d5 900e9c3 2a597a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import streamlit as st
import io
import sys
import time
import json
sys.path.append("./virtex/")
from model import *
# # TODO:
# - Reformat the model introduction
# - Make the iterative text generation
def gen_show_caption(sub_prompt=None, cap_prompt = ""):
with st.spinner("Generating Caption"):
subreddit, caption = virtexModel.predict(image_dict, sub_prompt=sub_prompt, prompt=cap_prompt)
st.markdown(
f"""
<style>
red{{
color:#c62828
}}
blue{{
color:#2a72d5
}}
mono{{
font-family: "Inconsolata";
}}
</style>
### <red> r/{subreddit} </red> <blue> {cap_prompt} </blue> {caption}
""",
unsafe_allow_html=True)
_, center, _ = st.columns([1,8,1])
with center:
st.title("Image Captioning Demo from RedCaps")
st.sidebar.markdown(
"""
### Image Captioning Model from VirTex trained on RedCaps
Use this page to caption your own images or try out some of our samples.
You can also generate captions as if they are from specific subreddits,
as if they start with a particular prompt, or even both.
Share your results on twitter with #redcaps or with a friend*.
"""
)
# st.markdown(footer,unsafe_allow_html=True)
with st.spinner("Loading Model"):
virtexModel, imageLoader, sample_images, valid_subs = create_objects()
select_idx = None
st.sidebar.title("Select a sample image")
if st.sidebar.button("Random Sample Image"):
select_idx = get_rand_idx(sample_images)
sample_image = sample_images[0 if select_idx is None else select_idx]
uploaded_image = None
# with st.sidebar.form("file-uploader-form", clear_on_submit=True):
uploaded_file = st.sidebar.file_uploader("Choose a file")
# submitted = st.form_submit_button("Submit")
if uploaded_file is not None:# and submitted:
uploaded_image = Image.open(io.BytesIO(uploaded_file.getvalue()))
select_idx = None # set this to help rewrite the cache
# class OnChange():
# def __init__(self, idx):
# self.idx = idx
# def __call__(self):
# st.write(f"the idx is: {self.idx}")
# st.write(f"the sample_image is {sample_image}")
# sample_image = st.sidebar.selectbox(
# "",
# sample_images,
# index = 0 if select_idx is None else select_idx,
# on_change=OnChange(0 if select_idx is None else select_idx)
# )
st.sidebar.title("Select a Subreddit")
sub = st.sidebar.selectbox(
"Type below to condition on a subreddit. Select None for a predicted subreddit",
valid_subs
)
st.sidebar.title("Write a Custom Prompt")
cap_prompt = st.sidebar.text_input(
"Write the start of your caption below",
value=""
)
_ = st.sidebar.button("Regenerate Caption")
st.sidebar.write("Advanced Options:")
num_captions = st.sidebar.select_slider("Number of Captions to Predict", options=[1,2,3,4,5], value=1)
nuc_size = st.sidebar.slider("Nucelus Size:\nLarger values lead to more diverse captions", min_value=0.0, max_value=1.0, value=0.8, step=0.05)
virtexModel.model.decoder.nucleus_size = nuc_size
image_file = sample_image
# LOAD AND CACHE THE IMAGE
if uploaded_image is not None:
image = uploaded_image
elif select_idx is None and 'image' in st.session_state:
image = st.session_state['image']
else:
image = Image.open(image_file)
image = image.convert("RGB")
st.session_state['image'] = image
image_dict = imageLoader.transform(image)
show_image = imageLoader.show_resize(image)
with center:
show = st.image(show_image)
show.image(show_image)
if sub is None and imageLoader.text_transform(cap_prompt) is not "":
st.write("Without a specified subreddit we default to /r/pics")
for i in range(num_captions):
gen_show_caption(sub, imageLoader.text_transform(cap_prompt))
st.sidebar.markdown(
"""
*Please note that this model was explicitly not trained on images of people, and as a result is not designed to caption images with humans.
This demo accompanies our paper RedCaps.
Created by Karan Desai, Gaurav Kaul, Zubin Aysola, Justin Johnson
"""
) |