File size: 6,372 Bytes
7925ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737c5eb
89b96b3
 
 
737c5eb
7925ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c1c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import streamlit as st
from huggingface_hub import hf_hub_url, cached_download
from PIL import Image
import os
import json
import glob
import random
from typing import Any, Dict, List
import torch
import torchvision

import wordsegment as ws

from virtex.config import Config
from virtex.factories import TokenizerFactory, PretrainingModelFactory, ImageTransformsFactory
from virtex.utils.checkpointing import CheckpointManager

CONFIG_PATH = "config.yaml"
MODEL_PATH = "checkpoint_last5.pth"
VALID_SUBREDDITS_PATH = "subreddit_list.json"
SAMPLES_PATH = "./samples/*.jpg"

class ImageLoader():
    def __init__(self):
        self.image_transform = torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Resize(256),
                               torchvision.transforms.CenterCrop(224),
                               torchvision.transforms.Normalize((.485, .456, .406), (.229, .224, .225))])
        self.show_size=500
        
    def load(self, im_path):
        im = torch.FloatTensor(self.image_transform(Image.open(im_path))).unsqueeze(0)
        return {"image": im}
    
    def raw_load(self, im_path):
        im = torch.FloatTensor(Image.open(im_path))
        return {"image": im}
    
    def transform(self, image):
        im = torch.FloatTensor(self.image_transform(image)).unsqueeze(0)
        return {"image": im}
    
    def text_transform(self, text):
        # at present just lowercasing:
        return text.lower()
    
    def show_resize(self, image):
        # ugh we need to do this manually cuz this is pytorch==0.8 not 1.9 lol
        image = torchvision.transforms.functional.to_tensor(image)
        x,y = image.shape[-2:]
        ratio = float(self.show_size/max((x,y)))
        image = torchvision.transforms.functional.resize(image, [int(x * ratio), int(y * ratio)])
        return torchvision.transforms.functional.to_pil_image(image)
    

class VirTexModel():
    def __init__(self):
        self.config = Config(CONFIG_PATH)
        ws.load()
        self.device = 'cpu'
        self.tokenizer = TokenizerFactory.from_config(self.config)
        self.model = PretrainingModelFactory.from_config(self.config).to(self.device)
        CheckpointManager(model=self.model).load(MODEL_PATH)
        self.model.eval()
        self.valid_subs = json.load(open(VALID_SUBREDDITS_PATH))
        
    def predict(self, image_dict, sub_prompt = None, prompt = ""):
        if sub_prompt is None:
            subreddit_tokens = torch.tensor([self.model.sos_index], device=self.device).long()
        else:
            subreddit_tokens = " ".join(ws.segment(ws.clean(sub_prompt)))
            subreddit_tokens = (
                [self.model.sos_index] + 
                self.tokenizer.encode(subreddit_tokens) +
                [self.tokenizer.token_to_id("[SEP]")]
                               )
            subreddit_tokens = torch.tensor(subreddit_tokens, device=self.device).long()
            
        if prompt is not "":
            # at present prompts without subreddits will break without this change
            # TODO FIX
            cap_tokens = self.tokenizer.encode(prompt)
            cap_tokens = torch.tensor(cap_tokens, device=self.device).long()
            subreddit_tokens = subreddit_tokens if sub_prompt is not None else torch.tensor(
                (
                    [self.model.sos_index] + 
                    self.tokenizer.encode("pics") + 
                    [self.tokenizer.token_to_id("[SEP]")]
                ), device = self.device).long()

            subreddit_tokens = torch.cat(
                [
                    subreddit_tokens,
                    cap_tokens
                ])
            
            
        predictions: List[Dict[str, Any]] = []
        
        is_valid_subreddit = False
        subreddit, rest_of_caption = "", ""
        image_dict["decode_prompt"] = subreddit_tokens
        while not is_valid_subreddit:
            
            with torch.no_grad():
                caption = self.model(image_dict)["predictions"][0].tolist()
                
            if self.tokenizer.token_to_id("[SEP]") in caption:
                sep_index = caption.index(self.tokenizer.token_to_id("[SEP]"))
                caption[sep_index] = self.tokenizer.token_to_id("://")
            
            caption = self.tokenizer.decode(caption)
            
            if "://" in caption:
                subreddit, rest_of_caption = caption.split("://")
                subreddit = "".join(subreddit.split())
                rest_of_caption = rest_of_caption.strip()
            else:
                subreddit, rest_of_caption = "", caption.strip()

            # split prompt for coloring:
            if prompt is not "":
                _, rest_of_caption = caption.split(prompt.strip())
            
            is_valid_subreddit = subreddit in self.valid_subs
            
        return subreddit, rest_of_caption

def download_files():
    #download model files
    download_files = [CONFIG_PATH, MODEL_PATH, VALID_SUBREDDITS_PATH]
    for f in download_files:
        fp = cached_download(hf_hub_url("zamborg/redcaps", filename=f))
        os.system(f"cp {fp} ./{f}")

def get_samples():
    return glob.glob(SAMPLES_PATH)

def get_rand_idx(samples):
    return random.randint(0,len(samples)-1)

@st.cache(allow_output_mutation=True) # allow mutation to update nucleus size
def create_objects():
    sample_images = get_samples()
    virtexModel = VirTexModel()
    imageLoader = ImageLoader()
    valid_subs = json.load(open(VALID_SUBREDDITS_PATH))
    valid_subs.insert(0, None)
    return virtexModel, imageLoader, sample_images, valid_subs

footer="""<style>
a:link , a:visited{
color: blue;
background-color: transparent;
text-decoration: underline;
}

a:hover,  a:active {
color: red;
background-color: transparent;
text-decoration: underline;
}

.footer {
position: fixed;
left: 0;
bottom: 0;
width: 100%;
background-color: white;
color: black;
text-align: center;
}
</style>
<div class="footer">
<p>
*Please note that this model was explicitly not trained on images of people, and as a result is not designed to caption images with humans.

This demo accompanies our paper RedCaps.

Created by Karan Desai, Gaurav Kaul, Zubin Aysola, Justin Johnson
</p>
</div>
"""