|
import numpy as np |
|
import cv2 |
|
import onnxruntime |
|
import roop.globals |
|
|
|
from roop.typing import Frame |
|
from roop.utilities import resolve_relative_path, conditional_thread_semaphore |
|
|
|
|
|
|
|
class Mask_XSeg(): |
|
plugin_options:dict = None |
|
|
|
model_xseg = None |
|
|
|
processorname = 'mask_xseg' |
|
type = 'mask' |
|
|
|
|
|
def Initialize(self, plugin_options:dict): |
|
if self.plugin_options is not None: |
|
if self.plugin_options["devicename"] != plugin_options["devicename"]: |
|
self.Release() |
|
|
|
self.plugin_options = plugin_options |
|
if self.model_xseg is None: |
|
model_path = resolve_relative_path('../models/xseg.onnx') |
|
onnxruntime.set_default_logger_severity(3) |
|
self.model_xseg = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) |
|
self.model_inputs = self.model_xseg.get_inputs() |
|
self.model_outputs = self.model_xseg.get_outputs() |
|
|
|
|
|
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') |
|
|
|
|
|
def Run(self, img1, keywords:str) -> Frame: |
|
temp_frame = cv2.resize(img1, (256, 256), cv2.INTER_CUBIC) |
|
temp_frame = temp_frame.astype('float32') / 255.0 |
|
temp_frame = temp_frame[None, ...] |
|
io_binding = self.model_xseg.io_binding() |
|
io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame) |
|
io_binding.bind_output(self.model_outputs[0].name, self.devicename) |
|
self.model_xseg.run_with_iobinding(io_binding) |
|
ort_outs = io_binding.copy_outputs_to_cpu() |
|
result = ort_outs[0][0] |
|
result = np.clip(result, 0, 1.0) |
|
result[result < 0.1] = 0 |
|
|
|
result = 1.0 - result |
|
return result |
|
|
|
|
|
def Release(self): |
|
del self.model_xseg |
|
self.model_xseg = None |
|
|
|
|
|
|