File size: 5,772 Bytes
2945355
 
 
075752f
30b0683
0aa3e03
0027dc5
2945355
 
 
 
30b0683
 
 
 
 
2945355
8af9162
 
 
 
 
4264aae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2945355
8af9162
0027dc5
 
8af9162
0027dc5
 
 
8af9162
 
 
0027dc5
2945355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa3e03
 
8af9162
0aa3e03
 
 
 
 
2945355
0aa3e03
2945355
 
4f13edc
 
 
 
 
 
8af9162
4f13edc
 
 
 
 
 
 
 
 
 
 
8af9162
 
 
4f13edc
 
8af9162
 
 
 
 
4f13edc
 
 
 
8af9162
 
 
 
 
 
 
4f13edc
 
 
 
 
 
 
8af9162
 
 
 
b504d5b
8af9162
 
 
 
 
 
 
 
2945355
 
8af9162
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
import subprocess
import os
import cv2
from huggingface_hub import hf_hub_download
import glob
from datetime import datetime

# Ensure 'checkpoint' directory exists
os.makedirs("checkpoint", exist_ok=True)

hf_hub_download(
    repo_id="fffiloni/X-Portrait",
    filename="model_state-415001.th",
    local_dir="checkpoint"
)

def extract_frames_with_labels(video_path, base_output_dir="frames"):
    # Generate a timestamped folder name
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    output_dir = os.path.join(base_output_dir, f"frames_{timestamp}")
    
    # Ensure output directory exists
    os.makedirs(output_dir, exist_ok=True)
    
    # Open the video file
    video_capture = cv2.VideoCapture(video_path)
    if not video_capture.isOpened():
        raise ValueError(f"Cannot open video file: {video_path}")
    
    frame_data = []
    frame_index = 0
    
    # Loop through the video frames
    while True:
        ret, frame = video_capture.read()
        if not ret:
            break  # Exit the loop if there are no frames left to read

        # Zero-padded frame index for filename and label
        frame_label = f"{frame_index:04}"
        frame_filename = os.path.join(output_dir, f"frame_{frame_label}.jpg")
        
        # Save the frame as a .jpg file
        cv2.imwrite(frame_filename, frame)
        
        # Append the tuple (filename, label) to the list
        frame_data.append((frame_filename, frame_label))
        
        # Increment frame index
        frame_index += 1
    
    # Release the video capture object
    video_capture.release()
    
    return frame_data

# Define a function to run your script with selected inputs
def run_xportrait(source_image, driving_video, seed, uc_scale, best_frame, out_frames, num_mix, ddim_steps):

    # Create a unique output directory name based on current date and time
    output_dir_base = "outputs"
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    output_dir = os.path.join(output_dir_base, f"output_{timestamp}")
    os.makedirs(output_dir, exist_ok=True)

    model_config = "config/cldm_v15_appearance_pose_local_mm.yaml"
    resume_dir = "checkpoint/model_state-415001.th"
    
    # Construct the command
    command = [
        "python3", "core/test_xportrait.py",
        "--model_config", model_config,
        "--output_dir", output_dir,
        "--resume_dir", resume_dir,
        "--seed", str(seed),
        "--uc_scale", str(uc_scale),
        "--source_image", source_image,
        "--driving_video", driving_video,
        "--best_frame", str(best_frame),
        "--out_frames", str(out_frames),
        "--num_mix", str(num_mix),
        "--ddim_steps", str(ddim_steps)
    ]
    
    # Run the command
    try:
        subprocess.run(command, check=True)
        
        # Find the generated video file in the output directory
        video_files = glob.glob(os.path.join(output_dir, "*.mp4"))
        print(video_files)
        if video_files:
            return f"Output video saved at: {video_files[0]}", video_files[0]
        else:
            return "No video file was found in the output directory.", None
    except subprocess.CalledProcessError as e:
        return f"An error occurred: {e}", None

# Set up Gradio interface
css="""
div#frames-gallery{
    overflow: scroll!important;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href='https://github.com/bytedance/X-Portrait'>
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href='https://byteaigc.github.io/x-portrait/'>
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
        </div>
        """)
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    source_image = gr.Image(label="Source Image", type="filepath")
                    driving_video = gr.Video(label="Driving Video")
                with gr.Group():
                    with gr.Row():
                        best_frame = gr.Number(value=36, label="Best Frame")
                        out_frames = gr.Number(value=-1, label="Out Frames")
                    with gr.Accordion("Driving video Frames"):
                        driving_frames = gr.Gallery(show_label=True, columns=6, height=512, elem_id="frames-gallery")
                with gr.Row():
                    seed = gr.Number(value=999, label="Seed")
                    uc_scale = gr.Number(value=5, label="UC Scale")
                with gr.Row():
                    num_mix = gr.Number(value=4, label="Number of Mix")
                    ddim_steps = gr.Number(value=30, label="DDIM Steps")
                submit_btn = gr.Button("Submit")
            with gr.Column():
                video_output = gr.Video(label="Output Video")
                status = gr.Textbox(label="status")
                gr.Examples(
                    examples=[
                        ["./assets/source_image.png", "./assets/driving_video.mp4"]
                    ],
                    inputs=[source_image, driving_video]
                )


    driving_video.upload(
        fn = extract_frames_with_labels,
        inputs = [driving_video],
        outputs = [driving_frames],
        queue = False
    )
    
    submit_btn.click(
        fn = run_xportrait,
        inputs = [source_image, driving_video, seed, uc_scale, best_frame, out_frames, num_mix, ddim_steps],
        outputs = [status, video_output]
    )

# Launch the Gradio app
demo.launch()