Spaces:
Sleeping
Sleeping
File size: 2,727 Bytes
dba2a34 72970df dba2a34 72970df dba2a34 72970df dba2a34 72970df dba2a34 72970df dba2a34 72970df dba2a34 72970df dba2a34 72970df dba2a34 72970df dba2a34 72970df dba2a34 72970df dba2a34 72970df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
from flask import Flask, request, jsonify
from langchain_community.llms import LlamaCpp
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModel
from huggingface_hub import hf_hub_download, HfApi
# cosine_similarity
import torch
from torch.nn.functional import cosine_similarity
import os
app = Flask(__name__)
n_gpu_layers = 0
n_batch = 1024
# تنزيل النموذج باستخدام معالجة الأخطاء
try:
model_path = hf_hub_download(repo_id="repo_name", filename="model_file_name", force_download=True)
except Exception as e:
print(f"Error downloading the model: {e}")
model_path = None
# تأكد من أن النموذج تم تنزيله بنجاح
if model_path:
llm = LlamaCpp(
model_path=model_path, # path to GGUF file
temperature=0.1,
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
verbose=True,
n_ctx=4096
)
model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2')
model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2')
file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf')
print("model size ====> :", file_size.st_size, "bytes")
@app.route('/cv', methods=['POST'])
def get_skills():
cv_body = request.json.get('cv_body')
# Simple inference example
output = llm(
f"\n{cv_body}\nCan you list the skills mentioned in the CV?",
max_tokens=256, # Generate up to 256 tokens
stop=[""],
echo=True, # Whether to echo the prompt
)
return jsonify({'skills': output})
@app.get('/')
def health():
return jsonify({'status': 'Worked'})
@app.route('/compare', methods=['POST'])
def compare():
employee_skills = request.json.get('employee_skills') # string
jobs_skills = request.json.get('jobs_skills') # list of strings
if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
raise ValueError("jobs_skills must be a list of strings")
job_embeddings = model.encode(jobs_skills)
employee_embeddings = model.encode(employee_skills)
sim = []
employee_embeddings_tensor = torch.from_numpy(employee_embeddings).unsqueeze(0)
for job_e in job_embeddings:
job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
sim.append(cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1))
max_sim = max(sim)
index = sim.index(max_sim)
return jsonify({'job': jobs_skills[index]})
@app.route('/models', methods=['GET'])
def list_models():
hf_api = HfApi()
models = hf_api.list_models()
return jsonify({'models': models})
if __name__ == '__main__':
app.run()
|