Spaces:
Sleeping
Sleeping
File size: 2,340 Bytes
5d94b57 9f8186b 93885cf 9f8186b 93885cf 9f8186b 7c86bd0 9f8186b 7c86bd0 9f8186b c9f8cf6 ae4a9b6 9f8186b 7c86bd0 9f8186b b1711fb 9f8186b 7c86bd0 b1711fb 7c86bd0 9f8186b 93885cf cc17c3b 93885cf cc17c3b 93885cf cc17c3b 93885cf cc17c3b 93885cf cc17c3b 93885cf cc17c3b 93885cf 4327cda cc17c3b c385f70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
from flask import Flask, request, jsonify
from langchain_community.llms import LlamaCpp
from sentence_transformers import SentenceTransformer
from transformers import AutoModel
import torch
from torch.nn.functional import cosine_similarity
import os
app = Flask(__name__)
n_gpu_layers = 0
n_batch = 1024
llm = LlamaCpp(
model_path="Phi-3-mini-4k-instruct-q4.gguf", # path to GGUF file
temperature=0.1,
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
verbose=True,
n_ctx=4096
)
model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2')
model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2')
file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf')
print("model size ====> :", file_size.st_size, "bytes")
@app.route('/cv', methods=['POST'])
def get_skills():
cv_body = request.json.get('cv_body')
# Simple inference example
output = llm(
f"<|user|>\n{cv_body}<|end|>\n<|assistant|>Can you list the skills mentioned in the CV?<|end|>",
max_tokens=256, # Generate up to 256 tokens
stop=["<|end|>"],
echo=True, # Whether to echo the prompt
)
return jsonify({'skills': output})
@app.get('/')
def health():
return jsonify({'status': 'Worked'})
@app.route('/compare', methods=['POST'])
def compare():
employee_skills = request.json.get('employee_skills')
jobs_skills = request.json.get('jobs_skills')
# Validation
if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
raise ValueError("jobs_skills must be a list of strings")
# Encoding skills into embeddings
job_embeddings = model.encode(jobs_skills)
employee_embeddings = model.encode(employee_skills)
# Computing cosine similarity between employee skills and each job
similarity_scores = []
employee_embeddings_tensor = torch.from_numpy(employee_embeddings).unsqueeze(0)
for i, job_e in enumerate(job_embeddings):
job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1)
similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()})
return jsonify(similarity_scores)
if __name__ == '__main__':
app.run()
|