Spaces:
Sleeping
Sleeping
Delete main.py
Browse files
main.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
-
from langchain_community.llms import LlamaCpp
|
3 |
-
from sentence_transformers import SentenceTransformer
|
4 |
-
from transformers import AutoTokenizer, AutoModel
|
5 |
-
from huggingface_hub import hf_hub_download, HfApi
|
6 |
-
|
7 |
-
# cosine_similarity
|
8 |
-
import torch
|
9 |
-
from torch.nn.functional import cosine_similarity
|
10 |
-
import os
|
11 |
-
import warnings
|
12 |
-
|
13 |
-
warnings.simplefilter("ignore")
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
app = Flask(__name__)
|
18 |
-
|
19 |
-
n_gpu_layers = 0
|
20 |
-
n_batch = 1024
|
21 |
-
|
22 |
-
# تنزيل النموذج باستخدام معالجة الأخطاء
|
23 |
-
try:
|
24 |
-
model_path = hf_hub_download(repo_id="repo_name", filename="model_file_name", force_download=True)
|
25 |
-
except Exception as e:
|
26 |
-
print(f"Error downloading the model: {e}")
|
27 |
-
model_path = None
|
28 |
-
|
29 |
-
# تأكد من أن النموذج تم تنزيله بنجاح
|
30 |
-
if model_path:
|
31 |
-
llm = LlamaCpp(
|
32 |
-
model_path=model_path, # path to GGUF file
|
33 |
-
temperature=0.1,
|
34 |
-
n_gpu_layers=n_gpu_layers,
|
35 |
-
n_batch=n_batch,
|
36 |
-
verbose=True,
|
37 |
-
n_ctx=4096
|
38 |
-
)
|
39 |
-
|
40 |
-
model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2')
|
41 |
-
model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2')
|
42 |
-
|
43 |
-
file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf')
|
44 |
-
print("model size ====> :", file_size.st_size, "bytes")
|
45 |
-
|
46 |
-
@app.route('/cv', methods=['POST'])
|
47 |
-
def get_skills():
|
48 |
-
cv_body = request.json.get('cv_body')
|
49 |
-
|
50 |
-
# Simple inference example
|
51 |
-
output = llm(
|
52 |
-
f"\n{cv_body}\nCan you list the skills mentioned in the CV?",
|
53 |
-
max_tokens=256, # Generate up to 256 tokens
|
54 |
-
stop=[""],
|
55 |
-
echo=True, # Whether to echo the prompt
|
56 |
-
)
|
57 |
-
|
58 |
-
return jsonify({'skills': output})
|
59 |
-
|
60 |
-
@app.get('/')
|
61 |
-
def health():
|
62 |
-
return jsonify({'status': 'Worked'})
|
63 |
-
|
64 |
-
@app.route('/compare', methods=['POST'])
|
65 |
-
def compare():
|
66 |
-
employee_skills = request.json.get('employee_skills') # string
|
67 |
-
jobs_skills = request.json.get('jobs_skills') # list of strings
|
68 |
-
|
69 |
-
if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
|
70 |
-
raise ValueError("jobs_skills must be a list of strings")
|
71 |
-
|
72 |
-
job_embeddings = model.encode(jobs_skills)
|
73 |
-
employee_embeddings = model.encode(employee_skills)
|
74 |
-
sim = []
|
75 |
-
employee_embeddings_tensor = torch.from_numpy(employee_embeddings).unsqueeze(0)
|
76 |
-
for job_e in job_embeddings:
|
77 |
-
job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
|
78 |
-
sim.append(cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1))
|
79 |
-
|
80 |
-
max_sim = max(sim)
|
81 |
-
index = sim.index(max_sim)
|
82 |
-
return jsonify({'job': jobs_skills[index]})
|
83 |
-
|
84 |
-
@app.route('/models', methods=['GET'])
|
85 |
-
def list_models():
|
86 |
-
hf_api = HfApi()
|
87 |
-
models = hf_api.list_models()
|
88 |
-
return jsonify({'models': models})
|
89 |
-
|
90 |
-
if __name__ == '__main__':
|
91 |
-
app.run()
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|