zayanomar5 commited on
Commit
82407c0
·
verified ·
1 Parent(s): 72cf55b

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +20 -1
main.py CHANGED
@@ -50,7 +50,6 @@ def health():
50
  # we will make here post request to compare between lists of skills one has employee just one text and the other has the of jobs has many texts
51
  # the llm will say the most similar job to the cv
52
  @app.route('/compare', methods=['POST'])
53
- @app.route('/compare', methods=['POST'])
54
  def compare():
55
  employee_skills = request.json.get('employee_skills')
56
  jobs_skills = request.json.get('jobs_skills')
@@ -70,6 +69,26 @@ def compare():
70
  similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()})
71
 
72
  return jsonify(similarity_scores)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
 
75
  if __name__ == '__main__':
 
50
  # we will make here post request to compare between lists of skills one has employee just one text and the other has the of jobs has many texts
51
  # the llm will say the most similar job to the cv
52
  @app.route('/compare', methods=['POST'])
 
53
  def compare():
54
  employee_skills = request.json.get('employee_skills')
55
  jobs_skills = request.json.get('jobs_skills')
 
69
  similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()})
70
 
71
  return jsonify(similarity_scores)
72
+ @app.route('/compare', methods=['POST'])
73
+ def compare_jop():
74
+ employee_skills = request.json.get('post')
75
+ jobs_skills = request.json.get('employee_skills')
76
+
77
+ if not isinstance(employee_skills, list) or not all(isinstance(skill, str) for skill in employee_skills):
78
+ raise ValueError("employee_skills must be a list of strings")
79
+
80
+ job_embeddings = model.encode(employee_skills)
81
+ employee_embeddings = model.encode(emplpostoyee_skills)
82
+
83
+ similarity_scores = []
84
+ employee_embeddings_tensor = torch.from_numpy(employee_embeddings).unsqueeze(0)
85
+
86
+ for i, job_e in enumerate(job_embeddings):
87
+ job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
88
+ similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1)
89
+ similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()})
90
+
91
+ return jsonify(similarity_scores)
92
 
93
 
94
  if __name__ == '__main__':