from flask import Flask, request, jsonify from langchain_community.llms import LlamaCpp from sentence_transformers import SentenceTransformer from transformers import AutoTokenizer, AutoModel from huggingface_hub import hf_hub_download, HfApi # cosine_similarity import torch from torch.nn.functional import cosine_similarity import os app = Flask(__name__) n_gpu_layers = 0 n_batch = 1024 # تنزيل النموذج باستخدام معالجة الأخطاء try: model_path = hf_hub_download(repo_id="repo_name", filename="model_file_name", force_download=True) except Exception as e: print(f"Error downloading the model: {e}") model_path = None # تأكد من أن النموذج تم تنزيله بنجاح if model_path: llm = LlamaCpp( model_path=model_path, # path to GGUF file temperature=0.1, n_gpu_layers=n_gpu_layers, n_batch=n_batch, verbose=True, n_ctx=4096 ) model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2') model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2') file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf') print("model size ====> :", file_size.st_size, "bytes") @app.route('/cv', methods=['POST']) def get_skills(): cv_body = request.json.get('cv_body') # Simple inference example output = llm( f"\n{cv_body}\nCan you list the skills mentioned in the CV?", max_tokens=256, # Generate up to 256 tokens stop=[""], echo=True, # Whether to echo the prompt ) return jsonify({'skills': output}) @app.get('/') def health(): return jsonify({'status': 'Worked'}) @app.route('/compare', methods=['POST']) def compare(): employee_skills = request.json.get('employee_skills') # string jobs_skills = request.json.get('jobs_skills') # list of strings if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills): raise ValueError("jobs_skills must be a list of strings") job_embeddings = model.encode(jobs_skills) employee_embeddings = model.encode(employee_skills) sim = [] employee_embeddings_tensor = torch.from_numpy(employee_embeddings).unsqueeze(0) for job_e in job_embeddings: job_e_tensor = torch.from_numpy(job_e).unsqueeze(0) sim.append(cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1)) max_sim = max(sim) index = sim.index(max_sim) return jsonify({'job': jobs_skills[index]}) @app.route('/models', methods=['GET']) def list_models(): hf_api = HfApi() models = hf_api.list_models() return jsonify({'models': models}) if __name__ == '__main__': app.run()