from flask import Flask, request, jsonify from langchain_community.llms import LlamaCpp from sentence_transformers import SentenceTransformer from transformers import AutoTokenizer, AutoModel # cosine_similarity import torch from torch.nn.functional import cosine_similarity import os app = Flask(__name__) n_gpu_layers = 0 n_batch = 1024 llm = LlamaCpp( model_path="Phi-3-mini-4k-instruct-q4.gguf", # path to GGUF file temperature=0.1, n_gpu_layers=n_gpu_layers, n_batch=n_batch, verbose=True, n_ctx=4096 ) model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2') model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2') file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf') print("model size ====> :", file_size.st_size, "bytes") @app.route('/cv', methods=['POST']) def get_skills(): cv_body = request.json.get('cv_body') # Simple inference example output = llm( f"<|user|>\n{cv_body}<|end|>\n<|assistant|>Can you list the skills mentioned in the CV?<|end|>", max_tokens=256, # Generate up to 256 tokens stop=["<|end|>"], echo=True, # Whether to echo the prompt ) return jsonify({'skills': output}) @app.get('/') def health(): return jsonify({'status': 'Worked'}) # we will make here post request to compare between lists of skills one has employee just one text and the other has the of jobs has many texts # the llm will say the most similar job to the cv @app.route('/compare', methods=['POST']) def compare(): employee_skills = request.json.get('employee_skills') # CV text jobs_skills = request.json.get('jobs_skills') # List of job skills if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills): raise ValueError("The jobs_skills must be a list of strings") # Convert texts to embeddings arrays employee_embedding = np.array([model.encode(employee_skills)]) job_embeddings = np.array([model.encode(skill) for skill in jobs_skills]) # Calculate similarity using cosine similarity similarities = cosine_similarity(employee_embedding, job_embeddings)[0] # Find the most similar job and its corresponding similarity score max_similarity = np.max(similarities) most_similar_index = np.argmax(similarities) most_similar_job = jobs_skills[most_similar_index] return jsonify({'job': most_similar_job, 'similarity_score': max_similarity}) if __name__ == '__main__': app.run()