from flask import Flask, request, jsonify from langchain_community.llms import LlamaCpp from sentence_transformers import SentenceTransformer from transformers import AutoModel import torch from torch.nn.functional import cosine_similarity import os app = Flask(__name__) n_gpu_layers = 0 n_batch = 1024 llm = LlamaCpp( model_path="Phi-3-mini-4k-instruct-q4.gguf", # path to GGUF file temperature=0.1, n_gpu_layers=n_gpu_layers, n_batch=n_batch, verbose=True, n_ctx=4096 ) model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2') model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2') file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf') print("model size ====> :", file_size.st_size, "bytes") @app.route('/cv', methods=['POST']) def get_skills(): cv_body = request.json.get('cv_body') # Simple inference example output = llm( f"<|user|>\n{cv_body}<|end|>\n<|assistant|>Can you list the skills mentioned in the CV?<|end|>", max_tokens=256, # Generate up to 256 tokens stop=["<|end|>"], echo=True, # Whether to echo the prompt ) return jsonify({'skills': output}) @app.get('/') def health(): return jsonify({'status': 'Worked'}) @app.route('/compare', methods=['POST']) def compare(): employee_skills = request.json.get('employee_skills') jobs_skills = request.json.get('jobs_skills') # Validation if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills): raise ValueError("jobs_skills must be a list of strings") # Encoding skills into embeddings job_embeddings = model.encode(jobs_skills) employee_embeddings = model.encode(employee_skills) # Computing cosine similarity between employee skills and each job similarity_scores = [] employee_embeddings_tensor = torch.from_numpy(employee_embeddings).unsqueeze(0) for i, job_e in enumerate(job_embeddings): job_e_tensor = torch.from_numpy(job_e).unsqueeze(0) similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1) similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()}) return jsonify(similarity_scores) if __name__ == '__main__': app.run()