omarz / main.py
zayanomar5's picture
Update main.py
9a4e129 verified
from flask import Flask, request, jsonify
from langchain_community.llms import LlamaCpp
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import cosine_similarity
from flask import Flask, request, jsonify
import torch
import os
app = Flask(__name__)
n_gpu_layers = 0
n_batch = 1024
llm = LlamaCpp(
model_path="Phi-3-mini-4k-instruct-q4.gguf", # path to GGUF file
temperature=0.1,
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
verbose=True,
n_ctx=4096
)
model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2')
model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2')
file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf')
print("model size ====> :", file_size.st_size, "bytes")
@app.route('/cv', methods=['POST'])
def get_skills():
cv_body = request.json.get('cv_body')
# Simple inference example
output = llm(
f"<|user|>\n{cv_body}<|end|>\n<|assistant|>Can you list the skills mentioned in the CV?<|end|>",
max_tokens=256, # Generate up to 256 tokens
stop=["<|end|>"],
echo=True, # Whether to echo the prompt
)
return jsonify({'skills': output})
@app.get('/')
def health():
return jsonify({'status': 'Worked'})
# we will make here post request to compare between lists of skills one has employee just one text and the other has the of jobs has many texts
# the llm will say the most similar job to the cv
@app.route('/compare', methods=['POST'])
def compare():
data = request.json
jobs_skills = data.get('jobs_skills')
employees_skills = data.get('employees_skills')
# Validate input
if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
return jsonify({"error": "jobs_skills must be a list of strings"}), 400
if not isinstance(employees_skills, list) or not all(isinstance(skills, str) for skills in employees_skills):
return jsonify({"error": "employees_skills must be a list of strings"}), 400
# Encode job skills
job_embeddings = [model.encode(skill) for skill in jobs_skills]
job_embeddings_tensor = torch.tensor(job_embeddings, dtype=torch.float32)
# Initialize a dictionary to store similarities for each employee
all_similarities = {}
for idx, employee_skills in enumerate(employees_skills):
# Encode employee skills
employee_embedding = model.encode(employee_skills)
employee_embedding_tensor = torch.tensor(employee_embedding, dtype=torch.float32).unsqueeze(0)
# Calculate cosine similarity
similarities = cosine_similarity(employee_embedding_tensor, job_embeddings_tensor)[0]
# Find the job with highest similarity for this employee
max_similarity_index = similarities.argmax()
max_similarity_job = jobs_skills[max_similarity_index]
# Convert similarities to float for JSON serialization
similarities_dict = {job: float(similarity) for job, similarity in zip(jobs_skills, similarities)}
all_similarities[f'employee_{idx+1}'] = {
'job': max_similarity_job,
'similarities': similarities_dict
}
return jsonify(all_similarities)
if __name__ == '__main__':
app.run()