Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,9 +1,8 @@
|
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from langchain_community.llms import LlamaCpp
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
from transformers import AutoModel
|
5 |
-
import torch
|
6 |
-
from torch.nn.functional import cosine_similarity
|
7 |
import os
|
8 |
|
9 |
app = Flask(__name__)
|
@@ -19,8 +18,6 @@ llm = LlamaCpp(
|
|
19 |
verbose=True,
|
20 |
n_ctx=4096
|
21 |
)
|
22 |
-
model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2')
|
23 |
-
|
24 |
model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2')
|
25 |
|
26 |
file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf')
|
@@ -33,9 +30,9 @@ def get_skills():
|
|
33 |
|
34 |
# Simple inference example
|
35 |
output = llm(
|
36 |
-
f"
|
37 |
max_tokens=256, # Generate up to 256 tokens
|
38 |
-
stop=["
|
39 |
echo=True, # Whether to echo the prompt
|
40 |
)
|
41 |
|
@@ -47,16 +44,16 @@ def health():
|
|
47 |
|
48 |
@app.route('/compare', methods=['POST'])
|
49 |
def compare():
|
50 |
-
|
51 |
employee_skills = request.json.get('employee_skills')
|
52 |
|
53 |
# Validation
|
54 |
if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
|
55 |
-
raise ValueError("
|
56 |
|
57 |
# Encoding skills into embeddings
|
58 |
employee_embeddings = model.encode(employee_skills)
|
59 |
-
|
60 |
|
61 |
# Computing cosine similarity between employee skills and each job
|
62 |
similarity_scores = []
|
@@ -64,9 +61,10 @@ def compare():
|
|
64 |
|
65 |
for i, job_e in enumerate(job_embeddings):
|
66 |
job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
|
67 |
-
similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1)
|
68 |
similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()})
|
69 |
|
70 |
return jsonify(similarity_scores)
|
|
|
71 |
if __name__ == '__main__':
|
72 |
-
app.run()
|
|
|
1 |
+
import torch
|
2 |
from flask import Flask, request, jsonify
|
3 |
from langchain_community.llms import LlamaCpp
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from transformers import AutoModel
|
|
|
|
|
6 |
import os
|
7 |
|
8 |
app = Flask(__name__)
|
|
|
18 |
verbose=True,
|
19 |
n_ctx=4096
|
20 |
)
|
|
|
|
|
21 |
model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2')
|
22 |
|
23 |
file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf')
|
|
|
30 |
|
31 |
# Simple inference example
|
32 |
output = llm(
|
33 |
+
f"\n{cv_body}\nCan you list the skills mentioned in the CV?",
|
34 |
max_tokens=256, # Generate up to 256 tokens
|
35 |
+
stop=[""],
|
36 |
echo=True, # Whether to echo the prompt
|
37 |
)
|
38 |
|
|
|
44 |
|
45 |
@app.route('/compare', methods=['POST'])
|
46 |
def compare():
|
47 |
+
jobs_skills = request.json.get('job_skills')
|
48 |
employee_skills = request.json.get('employee_skills')
|
49 |
|
50 |
# Validation
|
51 |
if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
|
52 |
+
raise ValueError("job_skills must be a list of strings")
|
53 |
|
54 |
# Encoding skills into embeddings
|
55 |
employee_embeddings = model.encode(employee_skills)
|
56 |
+
job_embeddings = model.encode(jobs_skills)
|
57 |
|
58 |
# Computing cosine similarity between employee skills and each job
|
59 |
similarity_scores = []
|
|
|
61 |
|
62 |
for i, job_e in enumerate(job_embeddings):
|
63 |
job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
|
64 |
+
similarity_score = torch.nn.functional.cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1)
|
65 |
similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()})
|
66 |
|
67 |
return jsonify(similarity_scores)
|
68 |
+
|
69 |
if __name__ == '__main__':
|
70 |
+
app.run()
|