zayanomar5 commited on
Commit
2a28615
·
verified ·
1 Parent(s): b4508e1

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +7 -7
main.py CHANGED
@@ -44,16 +44,16 @@ def health():
44
 
45
  @app.route('/compare', methods=['POST'])
46
  def compare():
47
- jobs_skills = request.json.get('job_skills')
48
- employee_skills = request.json.get('employee_skills')
49
 
50
  # Validation
51
  if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
52
- raise ValueError("job_skills must be a list of strings")
53
 
54
  # Encoding skills into embeddings
55
- employee_embeddings = model.encode(employee_skills)
56
  job_embeddings = model.encode(jobs_skills)
 
57
 
58
  # Computing cosine similarity between employee skills and each job
59
  similarity_scores = []
@@ -61,11 +61,11 @@ def compare():
61
 
62
  for i, job_e in enumerate(job_embeddings):
63
  job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
64
- similarity_score = torch.nn.functional.cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1)
65
- similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.squeeze().tolist()})
66
-
67
 
68
  return jsonify(similarity_scores)
69
 
 
70
  if __name__ == '__main__':
71
  app.run()
 
44
 
45
  @app.route('/compare', methods=['POST'])
46
  def compare():
47
+ employee_skills = request.json.get('jobs_skills')
48
+ jobs_skills = request.json.get('employee_skills')
49
 
50
  # Validation
51
  if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
52
+ raise ValueError("jobs_skills must be a list of strings")
53
 
54
  # Encoding skills into embeddings
 
55
  job_embeddings = model.encode(jobs_skills)
56
+ employee_embeddings = model.encode(employee_skills)
57
 
58
  # Computing cosine similarity between employee skills and each job
59
  similarity_scores = []
 
61
 
62
  for i, job_e in enumerate(job_embeddings):
63
  job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
64
+ similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1)
65
+ similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()})
 
66
 
67
  return jsonify(similarity_scores)
68
 
69
+
70
  if __name__ == '__main__':
71
  app.run()