zayanomar5 commited on
Commit
dc11f1f
·
verified ·
1 Parent(s): 3fb38c5

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +12 -5
main.py CHANGED
@@ -44,12 +44,20 @@ def health():
44
 
45
  @app.route('/compare', methods=['POST'])
46
  def compare():
47
- jobs_skills = request.json.get('jobs_skills') # Swapped positions of employee_skills and jobs_skills
48
- employee_skills = request.json.get('employee_skills') # Swapped positions of employee_skills and jobs_skills
49
 
50
  # Validation
 
 
 
 
 
 
51
  if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
52
- raise ValueError("jobs_skills must be a list of strings")
 
 
 
53
 
54
  # Encoding skills into embeddings
55
  job_embeddings = model.encode(jobs_skills)
@@ -61,11 +69,10 @@ def compare():
61
 
62
  for i, job_e in enumerate(job_embeddings):
63
  job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
64
- similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1)
65
  similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()})
66
 
67
  return jsonify(similarity_scores)
68
 
69
-
70
  if __name__ == '__main__':
71
  app.run()
 
44
 
45
  @app.route('/compare', methods=['POST'])
46
  def compare():
47
+ data = request.json
 
48
 
49
  # Validation
50
+ if 'jobs_skills' not in data or 'employee_skills' not in data:
51
+ return jsonify({"error": "Missing 'jobs_skills' or 'employee_skills' in request"}), 400
52
+
53
+ jobs_skills = data['jobs_skills']
54
+ employee_skills = data['employee_skills']
55
+
56
  if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
57
+ return jsonify({"error": "'jobs_skills' must be a list of strings"}), 400
58
+
59
+ if not isinstance(employee_skills, list) or not all(isinstance(skill, str) for skill in employee_skills):
60
+ return jsonify({"error": "'employee_skills' must be a list of strings"}), 400
61
 
62
  # Encoding skills into embeddings
63
  job_embeddings = model.encode(jobs_skills)
 
69
 
70
  for i, job_e in enumerate(job_embeddings):
71
  job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
72
+ similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor, dense_output=True)
73
  similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()})
74
 
75
  return jsonify(similarity_scores)
76
 
 
77
  if __name__ == '__main__':
78
  app.run()