Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -44,12 +44,20 @@ def health():
|
|
44 |
|
45 |
@app.route('/compare', methods=['POST'])
|
46 |
def compare():
|
47 |
-
|
48 |
-
employee_skills = request.json.get('employee_skills') # Swapped positions of employee_skills and jobs_skills
|
49 |
|
50 |
# Validation
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
|
52 |
-
|
|
|
|
|
|
|
53 |
|
54 |
# Encoding skills into embeddings
|
55 |
job_embeddings = model.encode(jobs_skills)
|
@@ -61,11 +69,10 @@ def compare():
|
|
61 |
|
62 |
for i, job_e in enumerate(job_embeddings):
|
63 |
job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
|
64 |
-
similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor,
|
65 |
similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()})
|
66 |
|
67 |
return jsonify(similarity_scores)
|
68 |
|
69 |
-
|
70 |
if __name__ == '__main__':
|
71 |
app.run()
|
|
|
44 |
|
45 |
@app.route('/compare', methods=['POST'])
|
46 |
def compare():
|
47 |
+
data = request.json
|
|
|
48 |
|
49 |
# Validation
|
50 |
+
if 'jobs_skills' not in data or 'employee_skills' not in data:
|
51 |
+
return jsonify({"error": "Missing 'jobs_skills' or 'employee_skills' in request"}), 400
|
52 |
+
|
53 |
+
jobs_skills = data['jobs_skills']
|
54 |
+
employee_skills = data['employee_skills']
|
55 |
+
|
56 |
if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills):
|
57 |
+
return jsonify({"error": "'jobs_skills' must be a list of strings"}), 400
|
58 |
+
|
59 |
+
if not isinstance(employee_skills, list) or not all(isinstance(skill, str) for skill in employee_skills):
|
60 |
+
return jsonify({"error": "'employee_skills' must be a list of strings"}), 400
|
61 |
|
62 |
# Encoding skills into embeddings
|
63 |
job_embeddings = model.encode(jobs_skills)
|
|
|
69 |
|
70 |
for i, job_e in enumerate(job_embeddings):
|
71 |
job_e_tensor = torch.from_numpy(job_e).unsqueeze(0)
|
72 |
+
similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor, dense_output=True)
|
73 |
similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()})
|
74 |
|
75 |
return jsonify(similarity_scores)
|
76 |
|
|
|
77 |
if __name__ == '__main__':
|
78 |
app.run()
|