from flask import Flask, request, jsonify from langchain_community.llms import LlamaCpp from sentence_transformers import SentenceTransformer from transformers import AutoTokenizer, AutoModel from sklearn.metrics.pairwise import cosine_similarity from flask import Flask, request, jsonify import torch app = Flask(__name__) n_gpu_layers = 0 n_batch = 1024 llm = LlamaCpp( model_path="Phi-3-mini-4k-instruct-q4.gguf", # path to GGUF file temperature=0.1, n_gpu_layers=n_gpu_layers, n_batch=n_batch, verbose=True, n_ctx=4096 ) model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2') model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2') file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf') print("model size ====> :", file_size.st_size, "bytes") @app.route('/cv', methods=['POST']) def get_skills(): cv_body = request.json.get('cv_body') # Simple inference example output = llm( f"<|user|>\n{cv_body}<|end|>\n<|assistant|>Can you list the skills mentioned in the CV?<|end|>", max_tokens=256, # Generate up to 256 tokens stop=["<|end|>"], echo=True, # Whether to echo the prompt ) return jsonify({'skills': output}) @app.get('/') def health(): return jsonify({'status': 'Worked'}) # we will make here post request to compare between lists of skills one has employee just one text and the other has the of jobs has many texts # the llm will say the most similar job to the cv @app.route('/compare', methods=['POST']) def compare(): jobs_skills = request.json.get('jobs_skills') employee_skills = request.json.get('employee_skills') if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills): raise ValueError("jobs_skills must be a list of strings") # Encode job and employee skills job_embeddings = [model.encode(skill) for skill in jobs_skills] employee_embeddings = model.encode(employee_skills) # Calculate cosine similarity similarities = [] employee_embedding_tensor = torch.tensor(employee_embeddings).unsqueeze(0) for job_embedding in job_embeddings: job_embedding_tensor = torch.tensor(job_embedding).unsqueeze(0) similarity = cosine_similarity(employee_embedding_tensor, job_embedding_tensor) similarities.append(similarity.item()) # Find the job with highest similarity max_similarity_index = similarities.index(max(similarities)) max_similarity_job = jobs_skills[max_similarity_index] return jsonify({'job': max_similarity_job, 'similarity': max(similarities)}) if __name__ == '__main__': app.run())