|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
import evaluate |
|
from datasets import Features, Sequence, Value |
|
import pdb |
|
|
|
from m2scorer import get_m2score, get_m2score_from_raw, load_m2 |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:module, |
|
title = {A great new module}, |
|
authors={huggingface, Inc.}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This new module is designed to solve this great ML task and is crafted with a lot of care. |
|
""" |
|
|
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Calculates how good are predictions given some references, using certain scores |
|
Args: |
|
predictions: list of predictions to score. Each predictions |
|
should be a string with tokens separated by spaces. |
|
references: list of reference for each prediction. Each |
|
reference should be a string with tokens separated by spaces. |
|
Returns: |
|
accuracy: description of the first score, |
|
another_score: description of the second score, |
|
Examples: |
|
Examples should be written in doctest format, and should illustrate how |
|
to use the function. |
|
|
|
>>> my_new_module = evaluate.load("my_new_module") |
|
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) |
|
>>> print(results) |
|
{'accuracy': 1.0} |
|
""" |
|
|
|
|
|
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class M2(evaluate.Metric): |
|
"""TODO: Short description of my evaluation module.""" |
|
|
|
def _info(self): |
|
|
|
return evaluate.MetricInfo( |
|
|
|
module_type="metric", |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
|
|
features=Features({ |
|
'predictions': Value(dtype='string'), |
|
'references': { |
|
'source_sentence': Value(dtype='string'), |
|
'edits': Sequence({ |
|
'from': Value(dtype='int32'), |
|
'to': Value(dtype='int32'), |
|
'text': [Value(dtype='string')], |
|
'aid': Value(dtype='int32'), |
|
}), |
|
}, |
|
}), |
|
|
|
homepage="http://module.homepage", |
|
|
|
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], |
|
reference_urls=["http://path.to.reference.url/new_module"] |
|
) |
|
|
|
def _download_and_prepare(self, dl_manager): |
|
"""Optional: download external resources useful to compute the scores""" |
|
|
|
pass |
|
|
|
def _compute(self, predictions, references): |
|
"""Returns the scores""" |
|
gold_data = self._features_to_gold_data(references) |
|
|
|
p, r, f = get_m2score(predictions, gold_data, tokenize=False, keep_gold=True) |
|
return { |
|
"f0.5": f, |
|
"precision": p, |
|
"recall": r, |
|
} |
|
|
|
def _features_to_gold_data(self, features): |
|
gold_data = [] |
|
for entry in features: |
|
annotators = {} |
|
edits = entry['edits'] |
|
for i in range(len(edits['from'])): |
|
edit = (edits['from'][i], edits['to'][i], edits['text'][i]) |
|
if edits['aid'][i] not in annotators: |
|
annotators[edits['aid'][i]] = [] |
|
annotators[edits['aid'][i]].append(edit) |
|
gold_data.append( (entry['source_sentence'], annotators) ) |
|
return gold_data |
|
|
|
def load_m2_file(self, fpath): |
|
data = load_m2(fpath) |
|
result = [] |
|
for src_sent, edits_ in data: |
|
edits = [] |
|
for aid, annotator_edits in edits_.items(): |
|
if len(annotator_edits) == 0: |
|
edits.append({'from': -1, 'to': -1, 'text': [''], 'aid': aid}) |
|
for from_, to_, text_ in annotator_edits: |
|
edits.append({'from': from_, 'to': to_, 'text': text_, 'aid': aid}) |
|
result.append({ |
|
'source_sentence': src_sent, |
|
'edits': edits, |
|
}) |
|
return result |
|
|