File size: 1,600 Bytes
fa6f424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import torch
from resources import set_start, audit_elapsedtime 

#Speech to text transcription model

def init_model_trans ():
    print("Initiating transcription model...")
    start = set_start()

    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

    model_id = "openai/whisper-large-v3"

    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
    )
    model.to(device)

    processor = AutoProcessor.from_pretrained(model_id)

    pipe = pipeline(
        "automatic-speech-recognition",
        model=model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        max_new_tokens=128,
        chunk_length_s=30,
        batch_size=16,
        return_timestamps=True,
        torch_dtype=torch_dtype,
        device=device,
    )
    print(f'Init model successful')
    audit_elapsedtime(function="Initiating transcription model", start=start)
    return pipe

def transcribe (audio_sample: bytes, pipe) -> str:
    print("Initiating transcription...")
    start = set_start()
    # dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
    # sample = dataset[0]["audio"]
    result = pipe(audio_sample)
    audit_elapsedtime(function="Transcription", start=start)
    print(result)
    
    st.write('trancription: ', result["text"])
    return result["text"]