Spaces:
Runtime error
Runtime error
update audit timestamps
Browse files
app.py
CHANGED
@@ -10,7 +10,6 @@ from resources import Lead_Labels, entity_labels, set_start, audit_elapsedtime
|
|
10 |
|
11 |
def main ():
|
12 |
|
13 |
-
|
14 |
rec = init_model_trans()
|
15 |
ner = init_model_ner() #async
|
16 |
|
@@ -23,9 +22,6 @@ def main ():
|
|
23 |
print("Render UI")
|
24 |
wav_audio_data = st_audiorec()
|
25 |
|
26 |
-
if wav_audio_data is not None:
|
27 |
-
print("Loading data...")
|
28 |
-
|
29 |
if wav_audio_data is not None and rec is not None:
|
30 |
print("Loading data...")
|
31 |
st.audio(wav_audio_data, format='audio/wav')
|
@@ -36,7 +32,6 @@ def main ():
|
|
36 |
|
37 |
def init_model_trans ():
|
38 |
print("Initiating transcription model...")
|
39 |
-
func_name = "init_model_trans"
|
40 |
start = set_start()
|
41 |
|
42 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -64,28 +59,31 @@ def init_model_trans ():
|
|
64 |
device=device,
|
65 |
)
|
66 |
print(f'Init model successful: {model}' )
|
67 |
-
audit_elapsedtime(function="
|
68 |
return pipe
|
69 |
|
70 |
def init_model_ner():
|
71 |
print("Initiating NER model...")
|
72 |
start = set_start()
|
73 |
model = GLiNER.from_pretrained("urchade/gliner_multi")
|
74 |
-
audit_elapsedtime(function="
|
75 |
return model
|
76 |
|
77 |
def transcribe (audio_sample: bytes, pipe) -> str:
|
78 |
-
|
79 |
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
80 |
# sample = dataset[0]["audio"]
|
81 |
result = pipe(audio_sample)
|
|
|
82 |
print(result)
|
83 |
|
84 |
st.write('trancription: ', result["text"])
|
85 |
return result["text"]
|
86 |
|
87 |
def get_entity_labels(model: GLiNER, text: str, labels: list): #-> Lead_labels:
|
|
|
88 |
entities = model.predict_entities(text, labels)
|
|
|
89 |
|
90 |
for entity in entities:
|
91 |
print(entity["text"], "=>", entity["label"])
|
|
|
10 |
|
11 |
def main ():
|
12 |
|
|
|
13 |
rec = init_model_trans()
|
14 |
ner = init_model_ner() #async
|
15 |
|
|
|
22 |
print("Render UI")
|
23 |
wav_audio_data = st_audiorec()
|
24 |
|
|
|
|
|
|
|
25 |
if wav_audio_data is not None and rec is not None:
|
26 |
print("Loading data...")
|
27 |
st.audio(wav_audio_data, format='audio/wav')
|
|
|
32 |
|
33 |
def init_model_trans ():
|
34 |
print("Initiating transcription model...")
|
|
|
35 |
start = set_start()
|
36 |
|
37 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
59 |
device=device,
|
60 |
)
|
61 |
print(f'Init model successful: {model}' )
|
62 |
+
audit_elapsedtime(function="Initiating transcription model", start=start)
|
63 |
return pipe
|
64 |
|
65 |
def init_model_ner():
|
66 |
print("Initiating NER model...")
|
67 |
start = set_start()
|
68 |
model = GLiNER.from_pretrained("urchade/gliner_multi")
|
69 |
+
audit_elapsedtime(function="Initiating NER model", start=start)
|
70 |
return model
|
71 |
|
72 |
def transcribe (audio_sample: bytes, pipe) -> str:
|
73 |
+
start = set_start()
|
74 |
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
75 |
# sample = dataset[0]["audio"]
|
76 |
result = pipe(audio_sample)
|
77 |
+
audit_elapsedtime(function="Transcription", start=start)
|
78 |
print(result)
|
79 |
|
80 |
st.write('trancription: ', result["text"])
|
81 |
return result["text"]
|
82 |
|
83 |
def get_entity_labels(model: GLiNER, text: str, labels: list): #-> Lead_labels:
|
84 |
+
start = set_start()
|
85 |
entities = model.predict_entities(text, labels)
|
86 |
+
audit_elapsedtime(function="Retreiving entity labels from text", start=start)
|
87 |
|
88 |
for entity in entities:
|
89 |
print(entity["text"], "=>", entity["label"])
|