Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
from st_audiorec import st_audiorec
|
3 |
|
4 |
-
import librosa
|
5 |
-
import soundfile
|
6 |
-
|
7 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
8 |
from datasets import load_dataset
|
9 |
import torch
|
@@ -14,26 +11,29 @@ audio_transcription: str = None
|
|
14 |
|
15 |
def main ():
|
16 |
|
|
|
|
|
17 |
print("Run init model")
|
18 |
pipe = init_model()
|
19 |
# x = st.slider('Select a value')
|
20 |
# st.write(x, 'squared is', x * x)
|
21 |
|
|
|
22 |
print("Render UI")
|
23 |
wav_audio_data = st_audiorec()
|
24 |
|
25 |
if wav_audio_data is not None:
|
|
|
26 |
st.audio(wav_audio_data, format='audio/wav')
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
30 |
# sample = dataset[0]["audio"]
|
31 |
|
32 |
-
audio_file_path = "data/audio1.wav"
|
33 |
-
audio_data, sample_rate = librosa.load(audio_file_path)
|
34 |
-
sample = transcribe(audio_data, pipe)
|
35 |
-
st.write('Sample:', transcribe(sample))
|
36 |
-
|
37 |
|
38 |
def init_model ():
|
39 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -62,7 +62,10 @@ def init_model ():
|
|
62 |
)
|
63 |
print(f'Init model successful: {model}' )
|
64 |
return pipe
|
|
|
|
|
65 |
|
|
|
66 |
def transcribe (audio_sample: bytes, pipe) -> str:
|
67 |
|
68 |
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
|
|
1 |
import streamlit as st
|
2 |
from st_audiorec import st_audiorec
|
3 |
|
|
|
|
|
|
|
4 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
5 |
from datasets import load_dataset
|
6 |
import torch
|
|
|
11 |
|
12 |
def main ():
|
13 |
|
14 |
+
print("Run init model")
|
15 |
+
pipe = init_model()
|
16 |
print("Run init model")
|
17 |
pipe = init_model()
|
18 |
# x = st.slider('Select a value')
|
19 |
# st.write(x, 'squared is', x * x)
|
20 |
|
21 |
+
print("Render UI")
|
22 |
print("Render UI")
|
23 |
wav_audio_data = st_audiorec()
|
24 |
|
25 |
if wav_audio_data is not None:
|
26 |
+
print("Loading data...")
|
27 |
st.audio(wav_audio_data, format='audio/wav')
|
28 |
+
sample = transcribe(wav_audio_data, pipe)
|
29 |
+
st.write('Sample:', sample)
|
30 |
+
|
31 |
|
32 |
+
|
33 |
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
34 |
# sample = dataset[0]["audio"]
|
35 |
|
36 |
+
# audio_file_path = "data/audio1.wav"
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def init_model ():
|
39 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
62 |
)
|
63 |
print(f'Init model successful: {model}' )
|
64 |
return pipe
|
65 |
+
print(f'Init model successful: {model}' )
|
66 |
+
return pipe
|
67 |
|
68 |
+
def transcribe (audio_sample: bytes, pipe) -> str:
|
69 |
def transcribe (audio_sample: bytes, pipe) -> str:
|
70 |
|
71 |
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|