Spaces:
Runtime error
Runtime error
Zeimoto
commited on
Commit
·
d130ccc
1
Parent(s):
d5a4a27
add openai whisper-large-v3
Browse files
app.py
CHANGED
@@ -1,10 +1,44 @@
|
|
1 |
import streamlit as st
|
2 |
from st_audiorec import st_audiorec
|
3 |
|
|
|
|
|
|
|
|
|
4 |
# x = st.slider('Select a value')
|
5 |
# st.write(x, 'squared is', x * x)
|
6 |
|
7 |
wav_audio_data = st_audiorec()
|
8 |
|
9 |
if wav_audio_data is not None:
|
10 |
-
st.audio(wav_audio_data, format='audio/wav')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from st_audiorec import st_audiorec
|
3 |
|
4 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
5 |
+
from datasets import load_dataset
|
6 |
+
import torch
|
7 |
+
|
8 |
# x = st.slider('Select a value')
|
9 |
# st.write(x, 'squared is', x * x)
|
10 |
|
11 |
wav_audio_data = st_audiorec()
|
12 |
|
13 |
if wav_audio_data is not None:
|
14 |
+
st.audio(wav_audio_data, format='audio/wav')
|
15 |
+
|
16 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
17 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
18 |
+
|
19 |
+
model_id = "openai/whisper-large-v3"
|
20 |
+
|
21 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
22 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
23 |
+
)
|
24 |
+
model.to(device)
|
25 |
+
|
26 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
27 |
+
|
28 |
+
pipe = pipeline(
|
29 |
+
"automatic-speech-recognition",
|
30 |
+
model=model,
|
31 |
+
tokenizer=processor.tokenizer,
|
32 |
+
feature_extractor=processor.feature_extractor,
|
33 |
+
max_new_tokens=128,
|
34 |
+
chunk_length_s=30,
|
35 |
+
batch_size=16,
|
36 |
+
return_timestamps=True,
|
37 |
+
torch_dtype=torch_dtype,
|
38 |
+
device=device,
|
39 |
+
)
|
40 |
+
|
41 |
+
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
42 |
+
sample = dataset[0]["audio"]
|
43 |
+
result = pipe(sample)
|
44 |
+
print(result["text"])
|