Spaces:
Runtime error
Runtime error
Upload 2 files (#3)
Browse files- Upload 2 files (919923aaabb4fe9ea22442707fc8bbabe0ee71f3)
Co-authored-by: Jinwei <[email protected]>
- app.py +20 -5
- requirements.txt +17 -0
app.py
CHANGED
@@ -8,8 +8,6 @@ import scipy.spatial as sp
|
|
8 |
import streamlit as st
|
9 |
import folium
|
10 |
from streamlit.components.v1 import html
|
11 |
-
|
12 |
-
|
13 |
from haversine import haversine, Unit
|
14 |
|
15 |
|
@@ -228,6 +226,10 @@ def search_geonames(toponym, df):
|
|
228 |
|
229 |
lat=[]
|
230 |
lon=[]
|
|
|
|
|
|
|
|
|
231 |
|
232 |
if 'geonames' in data:
|
233 |
for place_info in data['geonames']:
|
@@ -236,6 +238,11 @@ def search_geonames(toponym, df):
|
|
236 |
|
237 |
lat.append(latitude)
|
238 |
lon.append(longitude)
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
print(latitude)
|
241 |
print(longitude)
|
@@ -261,6 +268,11 @@ def search_geonames(toponym, df):
|
|
261 |
|
262 |
df['lat'] = lat
|
263 |
df['lon'] = lon
|
|
|
|
|
|
|
|
|
|
|
264 |
result = torch.cat(result, dim=1).detach().numpy()
|
265 |
return result
|
266 |
|
@@ -275,6 +287,7 @@ def get50Neigbors(locationID, dataset, k=50):
|
|
275 |
|
276 |
lat, lon, geohash,name = input_row['Latitude'], input_row['Longitude'], input_row['Geohash'], input_row['Name']
|
277 |
|
|
|
278 |
filtered_dataset = dataset.loc[dataset['Geohash'].str.startswith(geohash[:7])].copy()
|
279 |
|
280 |
filtered_dataset['distance'] = filtered_dataset.apply(
|
@@ -414,17 +427,20 @@ def showing(df):
|
|
414 |
size_scale = 100
|
415 |
color_scale = 255
|
416 |
for i in range(len(df)):
|
417 |
-
lat, lon, prob = df.iloc[i]['lat'], df.iloc[i]['lon'], df.iloc[i]['prob']
|
418 |
|
419 |
size = int(prob**2 * size_scale )
|
420 |
color = int(prob**2 * color_scale)
|
|
|
|
|
421 |
|
422 |
folium.CircleMarker(
|
423 |
location=[lat, lon],
|
424 |
radius=size,
|
425 |
color=f'#{color:02X}0000',
|
426 |
fill=True,
|
427 |
-
fill_color=f'#{color:02X}0000'
|
|
|
428 |
).add_to(m)
|
429 |
|
430 |
m.save("map.html")
|
@@ -486,7 +502,6 @@ def mapping(selected_place,locations, sentence_info):
|
|
486 |
def show_on_map():
|
487 |
|
488 |
|
489 |
-
|
490 |
input = st.text_area("Enter a sentence:", height=200)
|
491 |
|
492 |
st.button("Submit")
|
|
|
8 |
import streamlit as st
|
9 |
import folium
|
10 |
from streamlit.components.v1 import html
|
|
|
|
|
11 |
from haversine import haversine, Unit
|
12 |
|
13 |
|
|
|
226 |
|
227 |
lat=[]
|
228 |
lon=[]
|
229 |
+
name=[]
|
230 |
+
country=[]
|
231 |
+
fcodeName=[]
|
232 |
+
population=[]
|
233 |
|
234 |
if 'geonames' in data:
|
235 |
for place_info in data['geonames']:
|
|
|
238 |
|
239 |
lat.append(latitude)
|
240 |
lon.append(longitude)
|
241 |
+
name.append(place_info.get('name', ''))
|
242 |
+
country.append(place_info.get('countryName', ''))
|
243 |
+
fcodeName.append(place_info.get('fcodeName', ''))
|
244 |
+
population.append(place_info.get('population', ''))
|
245 |
+
|
246 |
|
247 |
print(latitude)
|
248 |
print(longitude)
|
|
|
268 |
|
269 |
df['lat'] = lat
|
270 |
df['lon'] = lon
|
271 |
+
df['name']=name
|
272 |
+
df['country']=country
|
273 |
+
df['fcodeName']=fcodeName
|
274 |
+
df['population']=population
|
275 |
+
|
276 |
result = torch.cat(result, dim=1).detach().numpy()
|
277 |
return result
|
278 |
|
|
|
287 |
|
288 |
lat, lon, geohash,name = input_row['Latitude'], input_row['Longitude'], input_row['Geohash'], input_row['Name']
|
289 |
|
290 |
+
|
291 |
filtered_dataset = dataset.loc[dataset['Geohash'].str.startswith(geohash[:7])].copy()
|
292 |
|
293 |
filtered_dataset['distance'] = filtered_dataset.apply(
|
|
|
427 |
size_scale = 100
|
428 |
color_scale = 255
|
429 |
for i in range(len(df)):
|
430 |
+
lat, lon, prob, name, country,fcodeName,population = df.iloc[i]['lat'], df.iloc[i]['lon'], df.iloc[i]['prob'],df.iloc[i]['name'],df.iloc[i]['country'],df.iloc[i]['fcodeName'],df.iloc[i]['population']
|
431 |
|
432 |
size = int(prob**2 * size_scale )
|
433 |
color = int(prob**2 * color_scale)
|
434 |
+
|
435 |
+
popup_info= f"<strong>Name:</strong>{name} <br/><strong>Country:</strong> {country}<br/> <strong>fcodeName:</strong> {fcodeName} <br/><strong>population:</strong>{population}"
|
436 |
|
437 |
folium.CircleMarker(
|
438 |
location=[lat, lon],
|
439 |
radius=size,
|
440 |
color=f'#{color:02X}0000',
|
441 |
fill=True,
|
442 |
+
fill_color=f'#{color:02X}0000',
|
443 |
+
popup=popup_info
|
444 |
).add_to(m)
|
445 |
|
446 |
m.save("map.html")
|
|
|
502 |
def show_on_map():
|
503 |
|
504 |
|
|
|
505 |
input = st.text_area("Enter a sentence:", height=200)
|
506 |
|
507 |
st.button("Submit")
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==0.89.0
|
2 |
+
torch==2.1.0
|
3 |
+
transformers @ git+https://github.com/zekun-li/transformers@geolm
|
4 |
+
scipy
|
5 |
+
rank_bm25
|
6 |
+
scikit-image
|
7 |
+
geopandas
|
8 |
+
pandas
|
9 |
+
numpy
|
10 |
+
requests==2.26.0
|
11 |
+
folium
|
12 |
+
rasterio
|
13 |
+
streamlit_folium
|
14 |
+
opencv-python
|
15 |
+
torchvision
|
16 |
+
matplotlib
|
17 |
+
haversine
|