Spaces:
Runtime error
Runtime error
File size: 8,766 Bytes
19ab7b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
"""
Original code by Zenafey
@zenafey
"""
import gradio as gr
from engine import generate_sd, generate_sdxl, transform_sd, controlnet_sd, get_models
from const import CMODELS, CMODULES, SAMPLER_LIST, SDXL_MODEL_LIST
with gr.Blocks(theme="Base") as demo:
gr.Markdown("""
<h1><center>Zenafey Studio</center></h>
<h2><center>powered by Prodia Stable Diffusion API</center></h2>""")
with gr.Tab("/sdxl/generate [BETA]"):
with gr.Row():
with gr.Column(scale=6, min_width=600):
prompt = gr.Textbox("puppies in a cloud, 4k", placeholder="Prompt", show_label=False, lines=3)
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3)
with gr.Row():
with gr.Column():
sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method",
choices=SAMPLER_LIST)
model = gr.Dropdown(
interactive=True,
value="sd_xl_base_1.0.safetensors [be9edd61]",
show_label=True,
label="Stable Diffusion XL Checkpoint",
choices=SDXL_MODEL_LIST
)
seed = gr.Number(label="Seed", value=-1)
with gr.Column():
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=50, value=25, step=1)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
text_button = gr.Button("Generate", variant='primary')
with gr.Column(scale=7):
image_output = gr.Image()
text_button.click(generate_sdxl,
inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, seed], outputs=image_output)
with gr.Tab("/sd/generate"):
with gr.Row():
with gr.Column(scale=6, min_width=600):
prompt = gr.Textbox("puppies in a cloud, 4k", placeholder="Prompt", show_label=False, lines=3)
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3)
with gr.Row():
with gr.Column():
sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method",
choices=SAMPLER_LIST)
model = gr.Dropdown(
interactive=True,
value="dreamlike-photoreal-2.0.safetensors [fdcf65e7]",
show_label=True,
label="Stable Diffusion Checkpoint",
choices=get_models()
)
upscale = gr.Checkbox(label="Upscale", value=True)
seed = gr.Number(label="Seed", value=-1)
with gr.Column():
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=50, value=25, step=1)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
text_button = gr.Button("Generate", variant='primary')
with gr.Column(scale=7):
image_output = gr.Image()
text_button.click(generate_sd,
inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed,
upscale], outputs=image_output)
with gr.Tab("/sd/transform"):
with gr.Row():
with gr.Row():
with gr.Column(scale=6, min_width=600):
with gr.Row():
with gr.Column():
image_input = gr.Image(type='filepath')
with gr.Column():
prompt = gr.Textbox("puppies in a cloud, 4k", label='Prompt', placeholder="Prompt", lines=3)
negative_prompt = gr.Textbox(placeholder="badly drawn", label='Negative Prompt', lines=3)
with gr.Row():
with gr.Column():
sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=SAMPLER_LIST)
model = gr.Dropdown(
interactive=True,
value="dreamlike-photoreal-2.0.safetensors [fdcf65e7]",
show_label=True,
label="Stable Diffusion Checkpoint",
choices=get_models()
)
upscale = gr.Checkbox(label="Upscale", value=True)
seed = gr.Number(label="Seed", value=-1)
with gr.Column():
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
denoising_strength = gr.Slider(label="Denoising Strength", minimum=0.1, maximum=1.0, value=0.7, step=0.1)
text_button = gr.Button("Generate", variant='primary')
with gr.Column(scale=7):
image_output = gr.Image()
text_button.click(transform_sd,
inputs=[image_input, model, prompt, denoising_strength, negative_prompt, steps, cfg_scale, seed, upscale, sampler
], outputs=image_output)
with gr.Tab("/sd/controlnet"):
with gr.Row():
with gr.Row():
with gr.Column(scale=6, min_width=600):
with gr.Row():
with gr.Column():
image_input = gr.Image(type='filepath')
with gr.Column():
prompt = gr.Textbox("puppies in a cloud, 4k", label='Prompt', placeholder="Prompt", lines=3)
negative_prompt = gr.Textbox(placeholder="badly drawn", label='Negative Prompt', lines=3)
with gr.Row():
with gr.Column():
sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=SAMPLER_LIST)
model = gr.Dropdown(
interactive=True,
value="control_v11p_sd15_canny [d14c016b]",
show_label=True,
label="ControlNet Model",
choices=CMODELS
)
module = gr.Dropdown(
interactive=True,
value="none",
show_label=True,
label="ControlNet Module",
choices=CMODULES
)
seed = gr.Number(label="Seed", value=-1)
with gr.Column():
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
resize_mode = gr.Dropdown(label='resize_mode', value="0", choices=["0", "1", "2"])
with gr.Row():
threshold_a = gr.Number(label="threshold_a", value=100)
threshold_b = gr.Number(label="threshold_b", value=200)
text_button = gr.Button("Generate", variant='primary')
with gr.Column(scale=7):
image_output = gr.Image()
text_button.click(controlnet_sd,
inputs=[image_input, model, module, threshold_a, threshold_b, resize_mode, prompt,
negative_prompt, steps, cfg_scale, seed, sampler, width, height],
outputs=image_output)
demo.launch(show_api=False)
|